Indian Journal of Physics

, Volume 93, Issue 7, pp 935–939 | Cite as

The perturbation analysis of a plasma soliton in the presence of averaged complex Stenflo relaxation and Gibbons potentials

  • R. Srinivasan
  • V. H. Kulkarni
Original Paper


On the basis of perturbation approach, we present here the behavior of a plasma soliton, in the presence of averaged complex Stenflo relaxation and Gibbons potentials, for (1) amplitude, (2) velocity, (3) phase and (4) frequency α. These results are compared with the observations of Ankiewicz (J Nonlinear Opt Phys Materials 4:857, 1995) for optical solitons by obtaining equivalent complex potentials for self-steepening and gain dispersion. The relevance of this phenomenological study is suggested.


Plasma soliton Nonlinear interaction Averaged complex potentials 


05.45.Yv 52.35.Sb 52.35.Mw 



SR acknowledges the library facilities of Mumbai University, Mumbai, India, and Indian Institute Geomagnetism, New Panvel, India. This topic was also presented in National Conference on Plasma Physics and Nonlinear Dynamics 2017 JIS University, Agarpara, Kolkata 700109, India.


  1. [1]
    P K Kaw Rev. Mod. Plasma Phys. 1 2 (2017)Google Scholar
  2. [2]
    A Scott Nonlinear Science, Emergence and Dynamics of Coherent Structures (Oxford: Oxford University Press) (1999)Google Scholar
  3. [3]
    M Lakshmanan Pramana J. Phys. 84 617 (2005)Google Scholar
  4. [4]
    R Srinivasan Some Studies of Nonlinear Waves Thesis (Mumbai University, Mumbai India) (2012)Google Scholar
  5. [5]
    P L Bhatnagar Nonlinear Waves in One Dimensional Dispersive Systems. Oxford Mathematical Society Monograms (eds.) I G Mac Donald and R Penrose (1977)Google Scholar
  6. [6]
    P G Drazin and R S Johnson Solitons, Introduction, 2nd Ed. (Cambridge: Cambridge University Press) (1990)Google Scholar
  7. [7]
    I Debnath Nonlinear Partial Differential Equations for Scientists and Engineers (Boston: Birkhausan) (2004)Google Scholar
  8. [8]
    N J Zabusky and M D Kruskal Physical Review Letts 15 240 (1965)Google Scholar
  9. [9]
    G S Lakhina, S V Singh and A P Kakkad,
  10. [10]
    J E Allen Physica Scripta 57 436 (1998)Google Scholar
  11. [11]
    N J Zabusky and M A Porter Soliton-Scholarpedia 5 2068 (2010)Google Scholar
  12. [12]
    N R Pereira and L Stenflo Phys. Fluids 20 1735 (1977)Google Scholar
  13. [13]
    Y S Kivshar and B A Malomed Rev. Mod. Phys. 61 763 (1986)Google Scholar
  14. [14]
    J Gibbons Phys. Lett. A 67 22 (1978)Google Scholar
  15. [15]
    F G Merkel, F Cooper, E Arévale, A Khare, A Saxena and A R Bishop, arXiv:1605.08475v1 [nlinPS] 26 May 2016
  16. [16]
    F De Martinis, C H Townes, J K Gustafson and P L Kelley Phys. Rev. 164 312 (1967)Google Scholar
  17. [17]
    M Trippenbach and Y B Band Phys. Rev. A 57 4791 (1968)Google Scholar
  18. [18]
    X Zhou, Z Wang, L Wang and B Luo Appl. Mech. Mater. 84–85 607 (2011)Google Scholar
  19. [19]
    M Manousacis, P Papaglannis and Hizannidis Opt. Commun. 218 293 (2002)Google Scholar
  20. [20]
    G P Agrawal J. Opt. Lett. 16 226 (1991)Google Scholar
  21. [21]
    A Ankiewicz J. Nonlinear Opt. Phys. Materials 4 857 (1995)Google Scholar
  22. [22]
  23. [23]
    T Kakutani and N Sugimoto Phys. Fluids 17 1617 (1974)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • R. Srinivasan
    • 1
  • V. H. Kulkarni
    • 2
  1. 1.MumbaiIndia
  2. 2.Navi MumbaiIndia

Personalised recommendations