Theoretical cross-sectional calculation of some structural fusion material on (n, α)-induced reactions

  • Tarik SiddikEmail author
Original Paper


27Al, 51V, 52Cr, 55Mn, 56Fe and 58Ni nuclei are some structural fusion substances. The neutron incident energy around 14–15 MeV is adequate to excite the nucleus for the reactions such as (n, p), (n, d), (n, 2n), (n, t), and (n, α). For fusion reactor technology, the reaction cross-sectional data have a critical importance in fusion reactors and development. Neutron irradiation produces considerable modifications in the mechanical and physical properties of each of the structural fusion material systems raising feasibility questions and design limitations. In this paper, for some structural fusion materials (n, α) reactions such as 52Cr(n, α)49Ti, 51V(n, α)48Si, 27Al(n, α)24Na, 58Ni(n, α)55Fe, 56Fe(n, α)53Cr and 55Mn(n, α)52V were done up to 40 MeV incident neutron energy. In the calculations, the equilibrium and pre-equilibrium impacts have been used. Calculations have been carried out with TALYS 1.9 and EMPIRE 3.2 (Malta) nuclear model codes. Results from performed calculations have been compared with the experimental nuclear reaction data, ENDF/B-VII.b4, JENDL-4.0 and JEFF-3.2 evaluated data.


(n, α) cross section Nuclear reactions TALYS 1.9 nuclear model code EMPIRE 3.2 (Malta) nuclear model code 


(24.60.Dr) & (24.10.Ht) 


  1. [1]
    P Relly, R Aversa, K Samuel, A. Antonio and F. Ion Tiberiu Petrescu Am J Eng Appl Sci. 10 703–708 (2017)Google Scholar
  2. [2]
    M Yiğit Appl Radiat Isot. 105 15 (2015)CrossRefGoogle Scholar
  3. [3]
    M Yiğit, E Tel J Fusion Energy 35 585 (2016)CrossRefGoogle Scholar
  4. [4]
    T Siddik J Adv Phys 6 18–25 (2017)CrossRefGoogle Scholar
  5. [5]
    T Siddik EPJ Web Conf 128, 01002 (2016)CrossRefGoogle Scholar
  6. [6]
    T Siddik J Fusion Energy 34 2015Google Scholar
  7. [7]
    T Siddik J Fusion Energy 32 (2013)Google Scholar
  8. [8]
    T Siddik Balkan Phy Lett 22, 221012 104–118 (2013)Google Scholar
  9. [9]
    E Tel, S Akça, A Kara, M Yiğit, A Aydın, J Fusion Energy 32 531–535 (2013)ADSCrossRefGoogle Scholar
  10. [10]
    H Azizakram, M Sadeghi, P Ashtari, F Zolfagharpour Appl Radiat Isotopes 112 147–155 (2016)CrossRefGoogle Scholar
  11. [11]
    M Yiğit, E Tel, A Kara J Fusion Energy 32 362–370 (2013)ADSCrossRefGoogle Scholar
  12. [12]
    S Koning, S Hilaire Goriely Talys-1.9 User’s Manual (2017)Google Scholar
  13. [13]
    M Herman, R Capote, M Sin B V Trkov, P Carlson, y Oblozinsky, C M Mattoon, H Wienkey, S Hoblit, Young-Sik Cho, G P A Nobre, V Plujko, V Zerkin Empire-3.2 Malta User’s Manual, Brookhaven National Lab (2013)Google Scholar
  14. [14]
    J J Griffin Phys Rev Lett 17 478 (1996)ADSCrossRefGoogle Scholar
  15. [15]
    C K Cline Nucl Phys A 193 417–437 (1972)ADSCrossRefGoogle Scholar
  16. [16]
    I Ribansky, P Oblozinsky, E Betak, Nulear Phys A 205 545–560 (1973)Google Scholar
  17. [17]
    H L Pai, D G Andrews Can J Phys 56 944–949 (1978)ADSCrossRefGoogle Scholar
  18. [18]
    J Joseph Jeremiah, D Suchiang, B M Jyrwa Ann Nuc Energy 43 208 (2012)Google Scholar
  19. [19]
    E E Bloom J Nucl Mater 258263 7–17 (1998)Google Scholar
  20. [20]
    M Yiğit, E Tel Nuc Sci Techn. 28 165 (2017)CrossRefGoogle Scholar
  21. [21]
    H Şahan, E Tel, M Yiğit J Fus Energy 34 16–23 (2015)CrossRefGoogle Scholar
  22. [22]
    E.Tel, M.Yiğit, G.Tanır, J Fusion Energy 31 184–190 (2012)ADSCrossRefGoogle Scholar
  23. [23]
    P. Obložinský Evaluated Nuclear Data, Handbook of Nuclear Engineering (2010)Google Scholar
  24. [24]
    M B Chadwick, P Oblozinsky, M Herman, N M Greene, R D McKnight, D L Smith, P G Young, R E MacFarlane, G M Hale, R C Haight, S Frankle, A C Kahler, T Kawano, R C Little, D G Madland, P Moller, R Mosteller, P Page, P Talou, H Trellue, M White, W B Wilson, R Arcilla, C L Dunford, S F Mughabghab, B Pritychenko, D Rochman, A A Sonzogni, C Lubitz, T H Trumbull, J Weinman, D Brown, D E Cullen, D Heinrichs, D McNabb, H Derrien, M Dunn, N M Larson, L C Leal, A D Carlson, R C Block, B Briggs, E Cheng, H Huria, K Kozier, A Courcelle, V Pronyaev, S C van der Marck, ENDF/B-VII.0, Nucl Data Sheets. (2006)Google Scholar
  25. [25]
    D Fiscaletti,A Sorli, Found Sci (2015) 20 387–398 (2014)Google Scholar
  26. [26]
    B Pandey, Anna Nuclear Energy 38 731–920 (2011)CrossRefGoogle Scholar
  27. [27]
    M Yiğit Appl Radiat Isotopes 139 151–158 (2018)CrossRefGoogle Scholar
  28. [28]
    L Junhua, L An, L Jiang, L He, Appl Radiat Isotopes 98 40–43 (2015)CrossRefGoogle Scholar
  29. [29]
    M Yiğit Nuclear Eng Technol, 50 411–415 (2018)CrossRefGoogle Scholar
  30. [30]
    L Junhua, Z Feng, L An, L Jiang, L He Radiat Phys Chem (2016)Google Scholar
  31. [31]
    M Yiğit, A. Kara, J Radioanal Nucl Chem 314, Issue 3, pp 2383–2392 (2017).CrossRefGoogle Scholar
  32. [32]
    M Yiğit, E Tel, İ H Sarpün, Nucl Instr Methods Phys Res Sect B Beam Interact Mater Atoms 385 1–94 (2016)Google Scholar
  33. [33]
    V K Mulikz H Naik, S V Suryanarayana, S D.Dhole, P M Prajapati, B S Shivashankar, K C Jagadeesan, S V Thakre, V N Bhoraskar, A Goswami J Radioanal Nucl Chem 296 1321–1329 (2013)CrossRefGoogle Scholar
  34. [34]
    M Yiğit, E Tel, G Tanır J Fusion Energy 32 336–343 (2013)Google Scholar
  35. [35]
    M B Chadwick M Herman b P Obložinsky M E DunncY Danond A C KahleraD L Smithe B Pritychenkob G Arbanasc R Arcillab R Brewera D A BrownbfR Capoteg A D Carlsonh Y S Chom H Derrienc K Guberc G M Halea P G Younga, Nuclear Data Sheets (2011)Google Scholar
  36. [36]
    Experimental nuclear reaction data (EXFOR), Database version of 2017.04.03,

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of General ScienceSalahaddin UniversityErbilIraq

Personalised recommendations