Dielectric, electrical and impedance study of single perovskite Pb(Ni1/3Mn1/3W1/3)O3

  • Sujit Kumar Dehury
  • Deeptimayee Khatua
  • P. Ganga Raju AcharyEmail author
  • R. N. P. Choudhary
Original Paper


A multiferroic material Pb(Ni1/3Mn1/3W1/3)O3 with ferroelectric and ferromagnetic properties at room temperature is designed for multifunctional applications. A orthorhombic perovskite crystal structure has been assigned for the present perovskite according to the X-ray diffraction patterns. At 1 kHz, dielectric constant (ɛr) increases from 1655 at 298 K to its first maximum 3514 at 457 K referred as magnetic transition. The high values of ɛr in the low frequency range show better dispersion, and with the increase in frequency, a gradual decrease in the ɛr values was observed. The contribution of grain and/or electrode/interface effects in the resistive/capacitive properties was ascertained by the Nyquist plots. An equivalent circuit has been suggested consisting of resistive and capacitive components (R, C, Q) estimates the bulk (grain) and grain boundary resistance and capacitance. The activation energy was found to be greater than 0.2 eV, supporting the conduction mechanism due to hopping of charge carriers.


Ceramics Multiferroic material Solid-state reaction Dielectric response Electrochemical impedance spectroscopy 


61.05.C− 77.22.Gm 



The present work is funded by the UGC-DAE-CSR, Mumbai (CRS-M-297), and the authors would like to thank Dr. P. D. Babu of UGC-DAE-CSR, Mumbai, and Dr. Raja Kishora Lenka of Powder Metallurgy Division, BARC, Mumbai, for their valuable suggestions and some characterization.

Compliance with ethical standards

Conflict of interest

The authors of the present paper declare that there is no conflict of interest.


  1. [1]
    L Z Wang Functional and Smart Materials (ed.) J G Webster (Wiley Encyclopedia of Electrical and Electronics Engineering) Vol 1, Chapter 1, Section 1, p 11 (1999).
  2. [2]
    T Lottermoser, T Lonkai, U Amann, D Hohlwein, J Ihringer and M Fiebig Nature 430 541 (2004)ADSCrossRefGoogle Scholar
  3. [3]
    N Hur, S Park, P A Sharma, J S Ahn, S Guha and S-W Cheong Nature 429 392 (2004)ADSCrossRefGoogle Scholar
  4. [4]
    N A Spaldin, S-W Cheong and R Ramesh Phys. Today 63 38 (2010)CrossRefGoogle Scholar
  5. [5]
    W Eerenstein, N D Mathur and J F Scott Nature 442 759 (2006)ADSCrossRefGoogle Scholar
  6. [6]
    M Bibes and A Barthelemy Nat. Mater. 7 425 (2008)ADSCrossRefGoogle Scholar
  7. [7]
    J Zhai, Z Xing, S Dong, J Li and D Viehland Appl. Phys. Lett. 88 62510 (2006)CrossRefGoogle Scholar
  8. [8]
    J R Hattrick-Simpers, L Dai, M Wuttig, I Takeuchi and E Quandt Rev. Sci. Instrum. 78 106103 (2007)ADSCrossRefGoogle Scholar
  9. [9]
    X Dai, Y Wen, P Li, J Yang and G Zhang Sens. Actuators A Phys. 156 350 (2009)CrossRefGoogle Scholar
  10. [10]
    J Lou, D Reed, M Liu and N X Sun Appl. Phys. Lett. 94 112508 (2009)ADSCrossRefGoogle Scholar
  11. [11]
    S Dong, J F Li, D Viehland, J Cheng and L E Cross Appl. Phys. Lett. 85 3534 (2004)ADSCrossRefGoogle Scholar
  12. [12]
    R A Islam and S Priya J. Mater. Sci. 43 3560 (2008)ADSCrossRefGoogle Scholar
  13. [13]
    J Ryu, S Priya, K Uchino and H-E Kim J. Electroceramics 8 107 (2002)CrossRefGoogle Scholar
  14. [14]
    Y Sasaki, M Yamamoto, A Ochi, T Inoue and S Takahashi Jpn. J. Appl. Phys. 38 5598 (1999)ADSCrossRefGoogle Scholar
  15. [15]
    J Yoo, K Yoon, Y Lee, S Suh, J Kim and C Yoo Jpn. J. Appl. Phys. 39 2680 (2000)ADSCrossRefGoogle Scholar
  16. [16]
    S K Sinha, S N Choudhary and R N P Choudhary J. Mater. Sci. 39 315 (2004)ADSCrossRefGoogle Scholar
  17. [17]
    V L Mathe, K K Patankar, S D Lotke, P B Joshi and S A Patil Bull. Mater. Sci. 25 347 (2002)CrossRefGoogle Scholar
  18. [18]
    C G Koops Phys. Rev. 83 121 (1951)ADSCrossRefGoogle Scholar
  19. [19]
    F Liang, Z Hui, W Bolin and Y Runzhang Prog. Cryst. Growth Charact. Mater. 40 161 (2000)CrossRefGoogle Scholar
  20. [20]
    A Kumar, B P Singh, R N P Choudhary and A K Thakur J. Alloys Compd. 394 292 (2005)CrossRefGoogle Scholar
  21. [21]
    M Ram J. Alloys Compd. 509 1744 (2011)CrossRefGoogle Scholar
  22. [22]
    A K Jonscher Nature 267 673 (1977)ADSCrossRefGoogle Scholar
  23. [23]
    A K Jonscher J. Phys. D. Appl. Phys. 32 R57 (1999)ADSCrossRefGoogle Scholar
  24. [24]
    J Ross Macdonald Solid State Ionics 13 147 (1984)CrossRefGoogle Scholar
  25. [25]
    R Ranjan, R Kumar, N Kumar, B Behera and R N P Choudhary J. Alloys Compd. 509 6388 (2011)CrossRefGoogle Scholar
  26. [26]
    S Sen, R N P Choudhary and P Pramanik Phys. B Condens. Matter 387 56 (2007)ADSCrossRefGoogle Scholar
  27. [27]
    N Hirose and A R West J. Am. Ceram. Soc. 79 1633 (1996)CrossRefGoogle Scholar
  28. [28]
    M A E-F Gabal, Y M Al Angari and A Y Obaid Comptes Rendus Chim. 16 704 (2013)CrossRefGoogle Scholar
  29. [29]
    A Belboukhari, E Choukri, Y Gagou, R Elmoznine, N Abdelmoula, A Neqali, M El Marssi, H Khemakhem and D Mezzane Superlattices Microstruct. 71 7 (2014)ADSCrossRefGoogle Scholar
  30. [30]
    Y Zhang, J-P Zhou, Q Liu, S Zhang and C-Y Deng Ceram. Int. 40 5853 (2014)CrossRefGoogle Scholar
  31. [31]
    D C L Vasconcelos, V C Costa, E H M Nunes, A C S Sabioni, M Gasparon and W L Vasconcelos Mater. Sci. Appl. 2 1375 (2011)Google Scholar
  32. [32]
    M Mahesh Kumar, A Srinivas, S V Suryanarayana, G S Kumar and T Bhimasankaram Bull. Mater. Sci. 21 251 (1998)CrossRefGoogle Scholar
  33. [33]
    M Shi, R Zuo, Y Xu, L Wang, C Gu, H Su, J Zhong and G Yu Ceram. Int. 40 9249 (2014)CrossRefGoogle Scholar
  34. [34]
    P Pahuja, C Prakash and R P Tandon Ceram. Int. 40 5731 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.P.G. Department of ChemistryVikram Deb (Autonomous) CollegeJeyporeIndia
  2. 2.Department of ChemistrySiksha ‘O’ Anusandhan, Deemed to be UniversityBhubaneswarIndia
  3. 3.Department of PhysicsSiksha ‘O’ Anusandhan, Deemed to be UniversityBhubaneswarIndia

Personalised recommendations