Influence of annealing temperature on tuning the band gap of Mn-doped ZnS thin films deposited by spray pyrolysis technique

  • M. Zahan
  • M. R. Islam
  • J. PodderEmail author
Original Paper


Transition metal (Mn)-doped II–VI binary (ZnS) semiconductor (Zn1−xMnxS, where, x = 0.1, 0.3, 0.5 and 0.7 M) thin films were deposited onto glass substrates using a spray pyrolysis deposition technique at 350 °C. The as-deposited film was found to be homogeneous and smooth for x = 0.3 M. Annealing temperature greatly affects the film morphology. So the effect of annealing temperature on the structural, optical and electrical properties of the Zn0.70Mn0.30S thin films was studied to explore the suitable application of these films in optoelectronics devices. The lattice defects and the internal dislocation density are found to decrease with the annealing temperature, causing improved crystallinity of the film. The decrease in dislocation density suggests an increase in the crystallinity of the film. The optical transmittance of the thin films increases with increasing annealing temperature, and the optical band gap is found to be red-shifted from 3.45 to 3.05 eV. The redshift in the band gap is due to the decrease in the amorphous phase in the thin film owning to annealing. The electrical conductivity of the films was also found to be improved by thermal treatment which may be attributed to the increased crystallinity.


II–VI semiconductor SEM X-rays Optical properties Band gap energy 


72.80.Ey 68.37.−d 61.10.Nz 78.40.−q 


  1. 1.
    F Gode, C Gumus and M Zor J. Cryst. Growth 299 136 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    H Haddad, A Chelouche, D Talantikite, H Merzouk, F Boudjouan and D Djouadi Thin Solid Films 589 451 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M E Hagary, M E Ismail, E R Shaaban, A A Rashidi and S Althoyaib J. Mate Chem and Phys 132 581 (2012)CrossRefGoogle Scholar
  4. 4.
    B Brodowska, W Dobrowolski, M Arciszewska, E I Slynko and V K Dugaev J. Alloys and Comp 423 205 (2006)CrossRefGoogle Scholar
  5. 5.
    A Cynthia et al. Nano Letters 3 1441 (2003)CrossRefGoogle Scholar
  6. 6.
    Y Wang, N Herron, K Moller and T Bein Solid State Commun. 77 33 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    A K M S Chowdhury, D C Cameron and M S J Hashmi Surface and Coating Technology 116 46 (1999)CrossRefGoogle Scholar
  8. 8.
    S Coe, W K Woo, M Bawendi and V Bulovic Nature 420 800 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    P Samarasekara, Chinese J. Phys 41 70 (2003)ADSGoogle Scholar
  10. 10.
    T Tan et al. Mater. Chem. Phys 111 305 (2008)CrossRefGoogle Scholar
  11. 11.
    M R Islam and J Podder Cryst. Res. Technol 44 286 (2009)CrossRefGoogle Scholar
  12. 12.
    W Luo et al. Microelectronics Journal 39 1108 (2008)CrossRefGoogle Scholar
  13. 13.
    S Liu, H Zhang and M T Swihart Nanotechnology 20 235603 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    D Nithyaprakash, M Ramamurthy, P Thirunavukarasu, T Balasubramaniam, J. Chandrasekaran and P Maadeswaran J. Optoelect. Bio. Mater 1 42 (2009)Google Scholar
  15. 15.
    B Bodo, D Prakash and P K Kalita Int. J. App. Phys and Maths 2 181 (2012)Google Scholar
  16. 16.
    F Rahman, M Zahan and J Podder Sensors & Transducers 149 54 (2013)Google Scholar
  17. 17.
    B D Cullity et al. Elements of X-ray diffraction, 3rd edn. (New Jersey: Prentice Hall), p 664 (2001)Google Scholar
  18. 18.
    R Ghosh, D Basak, and S Fujihara J. App. Phys 96 2689 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A Arunachalam, S Dhanapandian and C Manoharan Physica E 76 35 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A Wei, J Liu, M Zhuang and Y Zhao Materials Sci. Semicon. Proc 16 478 (2013)Google Scholar
  21. 21.
    T P Rao, M C S Kumar, S A Angayarkanni and M Ashok J. Alloys and Comp 485 413 (2009)CrossRefGoogle Scholar
  22. 22.
    P A Luque, M A Q Lopez and A Olivas Materials Letters 106 49 (2013)CrossRefGoogle Scholar
  23. 23.
    H Haddad, A Chelouche, D Talantikite, H Merzouk, F Boudjouan and D Djouadi Thin Solid Films 589 451 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J Masek and F Maca Phys. Rev B 69 165212 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    S Mahanty, D Basak, F Rueda and M Leoni J. Electron. Mater. 28 559 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    B Xia, I W Lenggoro and K Okuyama Chem. Mater 14 4969 (2002)CrossRefGoogle Scholar
  27. 27.
    L J Van-der Pauw A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape Philips Technical Review 20 220 (1958)Google Scholar
  28. 28.
    S A Gad, M Boshta, A M A E Soud and Y A E Gendy Int. J. Phy. Sci 5 1004 (2010)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations