Advertisement

Mechanism of droplets on electrowetting-on-dielectric chips transition from stillness to motion

  • Xiaowei Xu
  • Yuliang Zhang
  • Lining Sun
Original Paper
  • 36 Downloads

Abstract

Digital microfluidics technology based on the electrowetting-on-dielectric effect is a popular emerging technology whose objects of control are individual droplets on the microliter or even nano-liter scales. It has unique advantages such as rapid response, low reagent consumption, and high integration, so it has drawn widespread attention and use in the biological, medical, and chemical fields. However, to date, there has been relatively little research conducted on the mechanism of droplets transition from stillness to motion by electrowetting-on-dielectric actuation. Here, we studied the polarization mechanism underlying solid–liquid contact surface, thus building upon the previous research. The electric field in chip, internal pressure, and flow field of droplet were modeled and simulated numerically. Then, the process and mechanism of droplet transition from stillness to motion was comprehensively analyzed, and the results obtained from the simulation and discussion were in close agreement with experimental results. It is here shown that the process of droplet from stillness to motion involves four successive steps, which helps to better understand electrowetting-on-dielectric-induced droplet motions and physics of digital microfluidics systems. The aim of this work was to research basic physical mechanisms of electrowetting-on-dielectric droplet motion on a common ground so that the researchers may form a clear picture of the fundamentals.

Keywords

Digital microfluidics Electrowetting-on-dielectric Droplet motion Hydrostatic pressure Driving mechanism 

PACS Nos.

47.55.D− 68.03.Hj 68.03.Cd 77.22.Ej 

Notes

Acknowledgements

This work was supported in part by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16E050008), the Key Laboratory of Air-driven Equipment Technology of Zhejiang Province (Grant No. 2018E10011), and the National Natural Science Foundation of China (Grant No. 51275327).

References

  1. [1]
    M Abdelgawad and A R Wheeler Adv. Mater. 21 920 (2010)CrossRefGoogle Scholar
  2. [2]
    K Choi, A H C Ng, R Fobel and A R Wheeler Annu. Rev. Anal. Chem. 5 413 (2012)CrossRefGoogle Scholar
  3. [3]
    J L He, A T Chen, J H Lee and S K Fan Int. J. Mol. Sci. 16 22319 (2015)CrossRefGoogle Scholar
  4. [4]
    Y H Yu, J F Chen and J Zhou J. Micromech. Microeng. 24 015020 (2014)ADSCrossRefGoogle Scholar
  5. [5]
    H H Shen, S K Fan, C J Kim and D J Yao Microfluid. Nanofluid. 16 965 (2014)CrossRefGoogle Scholar
  6. [6]
    S Chen, M R Javed, H K Kim, J Lei, M Lazari, G J Shah, R M V Dam, P Y Keng and C J Kim Lab Chip 14 902 (2014)CrossRefGoogle Scholar
  7. [7]
    J H Song, R Evans, Y Y Lin, B N Hsu and R B Fair Microfluid. Nanofluid. 7 75 (2009)CrossRefGoogle Scholar
  8. [8]
    M Abdelgawad, P Park and A R Wheeler J. Appl. Phys. 105 094506 (2009)ADSCrossRefGoogle Scholar
  9. [9]
    J Gong and C J Kim Lab Chip 8 898 (2008)CrossRefGoogle Scholar
  10. [10]
    Y Li, Y Q Fu, S D Brodie, M Alghane and A J Walton Biomicrofluidics 6 12812 (2012)CrossRefGoogle Scholar
  11. [11]
    D G Pyne, W M Salman, M Abdelgawad and Y Sun Appl. Phys. Lett. 103 70 (2013)CrossRefGoogle Scholar
  12. [12]
    T Chen, C Dong, J Gao, Y Jia, P I Mark, M I Vai and R P Martins AIP Adv. 4 047129 (2014)ADSCrossRefGoogle Scholar
  13. [13]
    S K Cho, H Moon and C J Kim J. Microelectromech. S. 12 70 (2003)CrossRefGoogle Scholar
  14. [14]
    S W Walker and B Shapiro J. Microelectromech. S. 15 986 (2006)CrossRefGoogle Scholar
  15. [15]
    J Chen, J Yu, J Li, Y Lai and J Zhou J. Appl. Phys. Lett. 101 245 (2012)Google Scholar
  16. [16]
    V Jain, T P Raj, R Deshmukh and R Patrikar Microsyst. Technol. 21 1 (2015)CrossRefGoogle Scholar
  17. [17]
    A C Madison, M W Royal and R B Fair J. Microelectromech. S. 25 593 (2016)CrossRefGoogle Scholar
  18. [18]
    Y Li, R J Baker and D Raad Actuat. B-Chem. 229 63 (2016)CrossRefGoogle Scholar
  19. [19]
    C P Lee, H C Chen and M F Lai Biomicrofluidics 6 12814 (2012)CrossRefGoogle Scholar
  20. [20]
    A Ahmadi, J F Holzman, H Najjaran and M Hoorfar Microfluid. Nanofluid. 10 1019 (2011)CrossRefGoogle Scholar
  21. [21]
    X Xu, L Sun, L Chen, Z Zhou, J Xiao and Y Zhang Biomicrofluidics 8 064107 (2014)CrossRefGoogle Scholar
  22. [22]
    H H Shen, L Y Chung and D J Yao Biomicrofluidics 9 022403 (2015)CrossRefGoogle Scholar
  23. [23]
    D S Wang, and S K Fan Sensors 16 1175 (2016)CrossRefGoogle Scholar
  24. [24]
    K Chakrabatry, R B Fair and J Zeng IEEE T. Comput. Aid. D. 29 1001 (2010)CrossRefGoogle Scholar
  25. [25]
    M J Jebrail, M S Bartsch and K D Patel Lab Chip 12 2452 (2012)CrossRefGoogle Scholar
  26. [26]
    Z Zeng, K Zhang, W Wang, W Xu and J Zhou IEEE Sens. J. 16 4531 (2015)ADSCrossRefGoogle Scholar
  27. [27]
    N Vergauwe, D Witters, F Ceyssens, S Vermeir, B Verbruggen, R Puers and J Lammertyn J. Micromech. Microeng. 21 054026 (2011)ADSCrossRefGoogle Scholar
  28. [28]
    S M George and H Moon Biomicrofluidics 9 024116 (2015)CrossRefGoogle Scholar
  29. [29]
    A H C Ng, M D Chamberlain, H Situ, V Lee and A R Wheeler Nat Commun 6 7513 (2015)CrossRefGoogle Scholar
  30. [30]
    P Y Hung, P S Jiang, E F Lee, S K Fan and Y W Lu Microsyst. Technol. 1 (2015)Google Scholar
  31. [31]
    D J Yao J. Adhes. Sci. Technol. 26 1 (2012)Google Scholar
  32. [32]
    M G Pollack, V K Pamula, V Srinivasan and A E Eckhardt Expert. Rev. Mol. Diagn. 11 393 (2011)CrossRefGoogle Scholar
  33. [33]
    A E Kirby and A R Wheeler Lab Chip 13 2533 (2013)CrossRefGoogle Scholar
  34. [34]
    E Y Basova and F Foret Analyst 140 22 (2015)ADSCrossRefGoogle Scholar
  35. [35]
    H Y Huang, H H Shen, C H Tien, C J Li, S K Fan, C H Liu, W S Hsu and D J Yao Plos One 10, e0124196 (2015)CrossRefGoogle Scholar
  36. [36]
    Z Zhang, C Hitchcock and R F Katlicek Appl. Optics. 55 9113 (2016)ADSCrossRefGoogle Scholar
  37. [37]
    S Y Park and Y Nam Micromachines 8 3 (2016)CrossRefGoogle Scholar
  38. [38]
    A Tröls, S Clara and B Jakoby Actuat. A-Phys. 244 261 (2016)CrossRefGoogle Scholar
  39. [39]
    E Baird, P Young and K Monseni Microfluid. Nanofluid. 3 635 (2007)CrossRefGoogle Scholar
  40. [40]
    R Bavière, J Boutet and Y Fouillet Microfluid. Nanofluid. 4 287 (2008)CrossRefGoogle Scholar
  41. [41]
    D Chatterjee, H Shepherd and R L Garell Lab Chip 9 1219 (2009)CrossRefGoogle Scholar
  42. [42]
    SChoi, Y Kwon and J Lee Appl. Phys. Lett. 105 183509 (2014)ADSCrossRefGoogle Scholar
  43. [43]
    K Adamiak Microfluid. Nanofluid. 2 471 (2006)CrossRefGoogle Scholar
  44. [44]
    N Kumari, V Bahadur and S V Garimella J. Micromech. Microeng. 18 105015 (2008)ADSCrossRefGoogle Scholar
  45. [45]
    J K Park, S J Lee and K H Kang Biomicrofluidics 4 024102 (2010)CrossRefGoogle Scholar
  46. [46]
    J K Park and K H Kang Phys. Fluids 24 042105 (2012)ADSCrossRefGoogle Scholar
  47. [47]
    H Lee, S Yun, S H Ko and K H Kang Biomicrofluidics 3 44113 (2009)CrossRefGoogle Scholar
  48. [48]
    M J Schertzer, S I Gubarenko, R Ben-Mrad and P E Sullivan Langmuir 26 19230 (2010)CrossRefGoogle Scholar
  49. [49]
    W Cui, M Zhang, X Duan, W Pang, D Zhang and H Zhang Micromachines 6 778 (2015)CrossRefGoogle Scholar
  50. [50]
    W C Nelson and C J Kim J. Adhes. Sci. Technol. 26 1747 (2012)Google Scholar
  51. [51]
    F Mugele and J C Baret J. Phys-Condens. Mat 17 R705 (2005)CrossRefGoogle Scholar
  52. [52]
    M Ammam, D D Caprio and L Gaillon Electrochim. Acta 61 207 (2012)CrossRefGoogle Scholar
  53. [53]
    D Beyssen, L L Brizoual, O Elmazria and P Alnot Sens Actuator B 118 380 (2006)CrossRefGoogle Scholar
  54. [54]
    J Y Y And and R L Garrell Anal. Chem. 75 5097 (2003)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.College of Mechanical EngineeringQuzhou UniversityQuzhouChina
  2. 2.Key Laboratory of Air-Driven Equipment Technology of Zhejiang ProvinceQuzhou UniversityQuzhouChina
  3. 3.Robotics and Microsystem Center and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina

Personalised recommendations