Advertisement

Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with microtemperatures

  • Mohamed I. A. Othman
  • Elsyed M. Abd-Elaziz
Original Paper
  • 1 Downloads

Abstract

In this paper, the effect of initial stress on a thermoelastic porous medium with microtemperatures in the presence of magnetic field taking Hall current into account is investigated. The medium is permeated by a strong transverse magnetic field imposed perpendicularly on the displacement plane so the induced electric field is neglected. The normal mode analysis is used to obtain the exact expressions for displacement components, normal conduction current density field, transverse conduction current density field, microtemperature components, heat flux moments, stress components, temperature distribution and change in the volume fraction field. The variations of the considered variables with the horizontal distance are illustrated graphically. The results of comparisons we obtained were with and without initial stress and Hall current effect. Some particular cases of special interest have been deduced from the present investigation.

Keywords

Magneto-thermoelasticity Initial stress Hall current Microtemperatures Porous 

PACS Nos.

44.05. + e 81.40.Jj 62.20. fq 62.20.Dc 62.40. + i 

References

  1. [1]
    J W Nunziato and S C Cowin Arch. Ration. Mech. Anal. 72 175 (1979)CrossRefGoogle Scholar
  2. [2]
    S C Cowin and J W Nunziato J. Elasticity 13 125 (1983)CrossRefGoogle Scholar
  3. [3]
    M A Goodman and S C Cowin Arch. Ration. Mech. Anal. 44 248 (1972)ADSCrossRefGoogle Scholar
  4. [4]
    D Iesan Acta Mech. 60 67 (1986)CrossRefGoogle Scholar
  5. [5]
    D Iesan An. Stiint. Univ. Ai. I. Cuza Lasi Sect. I A Mat. 33 167 (1987)Google Scholar
  6. [6]
    S Chirita and A Scalia J. Therm. Stress. 24 433 (2001)MathSciNetCrossRefGoogle Scholar
  7. [7]
    A Pompei and A Scalia J. Therm. Stress. 25 183 (2002)MathSciNetCrossRefGoogle Scholar
  8. [8]
    A Scalia, A Pompei and S Chirita J. Therm. Stress. 27 209 (2004)MathSciNetCrossRefGoogle Scholar
  9. [9]
    M I A Othman and E E M Eraki Mech. Based Des. Struct. Mach. Int. J. 45 145 (2017)Google Scholar
  10. [10]
    M I A Othman, Y D Elmaklizi and N T Mansour Mult. Model. Mater. Struct. 13 122 (2017)CrossRefGoogle Scholar
  11. [11]
    N Sarkar Appl. Math. Comput. 219 10245 (2013)MathSciNetCrossRefGoogle Scholar
  12. [12]
    S C Cowin J. Biomech. 32 (3) 217 (1999)CrossRefGoogle Scholar
  13. [13]
    G B Gailani and S C Cowin Mech. Mater. 40(6) 507 (2008)CrossRefGoogle Scholar
  14. [14]
    S C Cowin and M M Mehrabadi J. Mech. Phys. Solids 55(1) 161 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L Cardoso, S P Fritton, G Gailani, M Benalla, and S C Cowin J. Biomech. 46(2) 253 (2013)CrossRefGoogle Scholar
  16. [16]
    G C Goulet, D Coombe, R J Martinuzzi and R F Zernicke Ann. Biomed. Eng. 37(7) 1390 (2009)CrossRefGoogle Scholar
  17. [17]
    G Gailani and S Cowin J. Mech. Phys. Solids 59(1) 103 (2011)ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    P E Palacio-Mancheno, A I Larriera, S B Doty, L Cardoso and S P Fritton J. Bone Miner. Res. 29(1) 142 (2014)CrossRefGoogle Scholar
  19. [19]
    T D Nguyen, A Oloyede and Y Gu Comput. Methods Biomech. Biomed. Eng. 19(2) 126 (2016)CrossRefGoogle Scholar
  20. [20]
    T H Lim and J H Hong J. Orthop. Res. 18(4) 671 (2000)CrossRefGoogle Scholar
  21. [21]
    T H Smit, J M Huyghe, and S C Cowin J. Biomech. 35(6) 829 (2002)CrossRefGoogle Scholar
  22. [22]
    U Andreaus, I Giorgio and A Madeo Zeitschrift fur Angewandte Mathematik und Physik 66(1) 209 (2014)ADSCrossRefGoogle Scholar
  23. [23]
    I Giorgio, U Andreaus, D Scerrato and F dell’Isola Biomech. Model. Mechanobiol. 15(5) 1325 (2016)CrossRefGoogle Scholar
  24. [24]
    C C Swan, R S Lakes, R A Brand and K J Stewart J. Biomech. Eng. 125(1) 25 (2003)CrossRefGoogle Scholar
  25. [25]
    A R Bonivtch, L F Bonewald and D P Nicolella J. Biomech. 40 2199 (2007)CrossRefGoogle Scholar
  26. [26]
    S W Verbruggen, T J Vaughan and L M McNamara J. R. Soc. Interface 9(75) 2735 (2012)CrossRefGoogle Scholar
  27. [27]
    B R McCreadie, S J Hollister, M B Schaffler and S A Goldstein J. Biomech. 37(4) 563 (2004)CrossRefGoogle Scholar
  28. [28]
    L Wang, S P Fritton, S C Cowin and S Weinbaum J. Biomech. 32(7) 663 (1999)CrossRefGoogle Scholar
  29. [29]
    I Giorgio, U Andreaus, F dell’Isola and T Lekszycki Extreme Mech. Lett. 13 141 (2017)CrossRefGoogle Scholar
  30. [30]
    A C Eringen and E S Suhubi Int. J. Eng. Sci. 2 389 (1964)CrossRefGoogle Scholar
  31. [31]
    A C Eringen, Microcontinuum Field Theories. I. Foundations and Solids (Berlin: Springer) (1999)CrossRefGoogle Scholar
  32. [32]
    D Iesan and R Quintanilla J. Therm. Stress. 23 199 (2000)MathSciNetCrossRefGoogle Scholar
  33. [33]
    D Iesan, J. Therm. Stress. 24 737 (2001)MathSciNetCrossRefGoogle Scholar
  34. [34]
    P S Casas and R Quintanilla Int. J. Eng. Sci. 43 33 (2005)CrossRefGoogle Scholar
  35. [35]
    R Quintanilla Arch. Mech. Arch. Mech. Stos. 61 371 (2009)MathSciNetGoogle Scholar
  36. [36]
    H M Youssef Appl. Math. Comput. 173 822 (2006)MathSciNetGoogle Scholar
  37. [37]
    M I A Othman and Y Q Song Appl. Math. Model. 32 811 (2008)MathSciNetCrossRefGoogle Scholar
  38. [38]
    M I A Othman, Mech. and Mech. Eng. 7 165 (2004)Google Scholar
  39. [39]
    M I A Othman and Y Q Song, Mult. Model. Mater. Struct. 5 43 (2009)Google Scholar
  40. [40]
    M I A Othman, W M Hasona and E M Abd-Elaziz Can. J. Phys. 92 1 (2014)Google Scholar
  41. [41]
    M I A Othman, M E M Zidan and M I M Hilal Can. J. Phys. 92 1359 (2014)ADSCrossRefGoogle Scholar
  42. [42]
    M I A Othman, W M Hasona and E M Abd-Elaziz J. Comput. Theor. Nanosci. 12 1 (2015)CrossRefGoogle Scholar
  43. [43]
    E Hall Am. J. Math. 2 287 (1879)MathSciNetCrossRefGoogle Scholar
  44. [44]
    T G Cowling Magneto hydrodynamics (New York: Wiley) (1957)Google Scholar
  45. [45]
    S Chirita, M Ciarletta and C D’Apice J. Math. Anal. Appl. 397 349 (2013)MathSciNetCrossRefGoogle Scholar
  46. [46]
    R S Dhaliwal and A Singh Dynamic Coupled Thermoelasticity, (New Delhi: Hindustan Publ. Corp) (1980)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations