Advertisement

Indian Journal of Physics

, Volume 93, Issue 4, pp 543–552 | Cite as

A static spherically symmetric solution in Einstein–Cartan theory of gravitation

  • L. N. Katkar
  • D. R. PhadatareEmail author
Original Paper
  • 26 Downloads

Abstract

A static spherically symmetric solution of Einstein–Cartan field equations is obtained by using the techniques of differential forms. The solution is proved to be expansion free, shear free and rotating with nonzero acceleration. The pressure and density have been influenced by the spin. The solution is algebraically special Petrov-type D. In the absence of spin, the solution reduces to the solution of Prasanna (Phys Rev D 11:2076 1975).

Keywords

Asymmetric connections Differential forms Cartan’s equations Kinematical parameters Weyssenhoff fluid 

PACS No.

04.20.jb-Exact solutions 

Notes

Acknowledgements

Authors wish to thank the Inter University Center for Astronomy and Astrophysics (IUCAA), Pune, India, for providing facilities and support during our visit to IUCAA.

References

  1. [1]
    E Cartan C. R. Acad. 174 437 (1922)Google Scholar
  2. [2]
    E Cartan Ann. c. Norm. Sup. 40 325 (1923)CrossRefGoogle Scholar
  3. [3]
    D W Sciama Recent Developments in General Relativity. Warsaw: Polish Scientific Publishers p 415 (1962)Google Scholar
  4. [4]
    T W B Kibble J. Math. Phys.  2 212 (1961)ADSCrossRefGoogle Scholar
  5. [5]
    R C Tolman Phys. Rev. 55 364 (1939)ADSCrossRefGoogle Scholar
  6. [6]
    B Kuchowicz Acta Cosmologica. 4 67 (1976)ADSGoogle Scholar
  7. [7]
    A Trautman Nat. Phys. Sci. 242 7 (1973)ADSCrossRefGoogle Scholar
  8. [8]
    F W Hehl Gen. Rel. Grav. 4 333 (1973)ADSCrossRefGoogle Scholar
  9. [9]
    F W Hehl, P Von der Heyde and G D Kerlik Phys. Rev. D. 10 1066 (1974)ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    F W Hehl, P von der Heyde, G D Kerlick, and J M Nester Rev. Mod. Phys. 48 393 (1976)ADSCrossRefGoogle Scholar
  11. [11]
    G D Kerlick Ph.D. Thesis, Princeton University (U.S.A) (1975)Google Scholar
  12. [12]
    C G Bohmer and Bronowski Piotr arXiv:gr-qc/0601089v2. (2006)
  13. [13]
    A R Prasanna Phys. Rev. D. 11 2076 (1975)ADSCrossRefGoogle Scholar
  14. [14]
    T Singh and R B S Yadav Indian J. Pure Appl. Math. 10 14 (1979)ADSMathSciNetGoogle Scholar
  15. [15]
    L N Katkar Int. J. Theor. Phys. 54 951 (2015)MathSciNetCrossRefGoogle Scholar
  16. [16]
    L N Katkar and V K Patil Int. J. Theor .Phys. 51 1050 (2012)CrossRefGoogle Scholar
  17. [17]
    S B Kalyanshetti and B B Waghmode Phys .Rev. D. 27 2835 (1983)ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E T Newman and R Penrose J. Math. Phys. 3 566 (1962)ADSCrossRefGoogle Scholar
  19. [19]
    D Kramer, H Stephani, M A H MacCallum, and E Herlt Exact Solutions of Einstein's Field Equations. Berlin: VEB Deutscher Verlag der Wissenschaften (Cambridge: Cambridge University Press) (1980)Google Scholar
  20. [20]
    S Jogia and J B Griffiths Gen. Relativ. Gravit. 12 597 (1980)ADSCrossRefGoogle Scholar
  21. [21]
    A K Raychaudhary Theoretical Cosmology (Oxford: Clarendon) (1979)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of MathematicsShivaji UniversityKolhapurIndia
  2. 2.Department of MathematicsBalasaheb Desai CollegePatanIndia

Personalised recommendations