Advertisement

Indian Journal of Physics

, Volume 93, Issue 4, pp 449–458 | Cite as

Enhanced photocatalytic activity and enormous dielectricity of α-Fe2O3/reduced graphene oxide nanocomposites

  • Sanchari Sarkar
  • Neepamala Giri
  • Archita Mondal
  • Subrata Sarkar
  • Ruma RayEmail author
Original Paper

Abstract

Nanocomposites of single-phase iron oxide (α-Fe2O3) and reduced graphene oxide (rGO) with different volume fractions have been prepared by chemical route. Structural, morphological and spectroscopic characterizations have been performed by XRD, FESEM, TEM, XPS and Raman studies. Photocatalytic activity of these composites has been investigated by the degradation of methylene blue dye under visible light irradiation. The activity is found to depend on the percentage of volume fraction (vf) of rGO in the composite. At \( v_{\text{f}} = 10.3, \) the photocatalytic activity becomes maximum and the degree of degradation of MB is found to be ~ eight times to that of pure α-Fe2O3. The enhanced photocatalytic activity may be attributed to the prolonged lifetime of electron–hole pair produced in α-Fe2O3. The stability and reusability of photocatalyst during photocatalytic reaction, which is a crucial factor for the practical applications, is also verified. At this particular volume fraction of rGO, i.e., vf = 10.3, the nanocomposite exhibits huge dielectric constant ~ 2950 times to that of pure α-Fe2O3 along with moderate dielectric loss enabling it a potential candidate for charge storage device.

Keywords

Reduced graphene oxide Nanocomposite Photocatalysis Dielectric constant 

PACS Nos.

81.05.ue 78.67.sc. 82.50-m 78.20 Ci 

Notes

Acknowledgements

Authors would like to thank DST, Govt. of India, for developing instrumental facilities like advance X-ray powder diffractometer (Bruker D8), UV–Vis spectrophotometer (Shimadzu UV-3101PC) and FESEM (JEOL, JSM-7610F) under FIST program at Jadavpur University, Kolkata. S. Sarkar, A. Mondal and N. Giri wish to thank DST for INSPIRE fellowship scheme.

References

  1. [1]
    B Pal and M Sharon Thin Solid Films 379 83 (2000)ADSCrossRefGoogle Scholar
  2. [2]
    A S Oliveira, E M Saggioro, T Pavesi, J C Moreira, L Filipe and V Ferreira Solar Photochemistry for Environmental Remediation—Advanced Oxidation Processes for Industrial Wastewater Treatment (Lisboa: InTech)Google Scholar
  3. [3]
    M A Lazar and W A Daoud RSC Adv. 3 4130 (2013)CrossRefGoogle Scholar
  4. [4]
    S Cho, J W Jang, J S Lee and K H Lee Nanoscale 4 2066 (2012)ADSGoogle Scholar
  5. [5]
    S G Kumar and L G Devi J. Phy. Chem. A 115 13211 (2011)CrossRefGoogle Scholar
  6. [6]
    S H Mohamed, M El-Hagary and A S Radwan Indian J. Phys. 87 223 (2013)ADSCrossRefGoogle Scholar
  7. [7]
    S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)ADSCrossRefGoogle Scholar
  8. [8]
    I Cesar, A Kay, J G Martinez and M Gratzel J. Am. Chem. Soc. 128 4582 (2006)CrossRefGoogle Scholar
  9. [9]
    C J Sartoretti, B D Alexander, R Solarska, I A Rutkowska, J Augustynski and R Cerny J. Phy. Chem. B 109 13685 (2005)CrossRefGoogle Scholar
  10. [10]
    J Z Zhang J. Phy. Chem. B 104 7239 (2000)Google Scholar
  11. [11]
    M Zhang, Y Lin, T J Mullen, T J Lin, L D Sun, C H Yan, T E Patten, D Wang and G Y Liu J. Phy. Chem. Lett. 3 3188 (2012)CrossRefGoogle Scholar
  12. [12]
    K Sivula, R Zboril, F L Formal, R Robert, A Weidenkaff, J Tucek, J Frydrych and M J Gratzel Am. Chem. Soc. 132 7436 (2010)Google Scholar
  13. [13]
    L Li, Y Yu, F Meng, Y Tan, R J Hamers and S Jin Nano Lett. 12 724 (2012)CrossRefGoogle Scholar
  14. [14]
    M Sohail, H Xue, Q Jiao, H Li, K Khan, S Wang and Y Jhao Mater. Res. Bull. 90 125 (2017)CrossRefGoogle Scholar
  15. [15]
    L Rao, J Xu, Y Ao and P Wang Mater. Res. Bull. 57 41 (2014)CrossRefGoogle Scholar
  16. [16]
    G K Pradhan, D K Padhi and K M Parida ACS Appl. Mater. & Interfaces 5 9101 (2013)CrossRefGoogle Scholar
  17. [17]
    X Liu, L Pan, T Lv, G Zhu, Z Sun and C Sun, Chem. Commun. 47 11984 (2011)CrossRefGoogle Scholar
  18. [18]
    O W Chun, C Mingliang, C Kwangyoun, K Cheolkyu, M Zeda and Z Lei Chin. J. Catal. 32 1577 (2011)Google Scholar
  19. [19]
    F Meng, J Li, S K Cushing, J Bright, M Zhi, J D Rowley, Z Hong, A Manivannan, A D Bristow and N Wu ACS Catal. 3 746 (2013)CrossRefGoogle Scholar
  20. [20]
    Y Hou, F Zuo, A Dagg and P Feng Nano Lett. 12 6464 (2012)Google Scholar
  21. [21]
    H. Li, Q. Zhao, X. Li, Z. Zhu, M. Tade and S. Liu J. Nanoparticle Res. 15 1 (2013)Google Scholar
  22. [22]
    J Kaur, K Anand, K Anand, R Thangaraj and R C Singh Indian J. Phys. 90 1183 (2016)Google Scholar
  23. [23]
    S Han, L Hu, Z Liang, S Wageh, A A Al-Ghamdi, Y Chen and X Fang Adv. Funct. Mater. 24 5719 (2014)CrossRefGoogle Scholar
  24. [24]
    Y Jiang, Y Song, Y Li, W Tian, Z Pan, P Yang, Y Li, Q Gu, and L Hu ACS Appl. Mater. Interfaces 9, 37645 (2017)CrossRefGoogle Scholar
  25. [25]
    Y Song, Z Chen, Y Li, Q Wang, F Fang, Y Zhou, L Hu and D Sun J. Mater. Chem. A 5 9022 (2017)CrossRefGoogle Scholar
  26. [26]
    Y Song, Y Li, L Zhu, Z Pan, Y Jiang, P Wang, Y Zhou, F Fang, L Hu and D Sun J. Mater. Chem. A 6 1086Google Scholar
  27. [27]
    C Pecharroman and J S Moya Adv. Mater. 12 294 (2000)CrossRefGoogle Scholar
  28. [28]
    Z M Dang, B Peng, D Xie, S H Yao, M J Jiang and J Bai Appl. Phy. Lett. 92 112910 (2008)ADSGoogle Scholar
  29. [29]
    T M Wu, Y W Lin and C S Liao Carbon 43 734 (2005)CrossRefGoogle Scholar
  30. [30]
    W S JR Hummers and R E Offeman J. Am. Chem. Soc. 80 1339 (1958)Google Scholar
  31. [31]
    D Wang, X Zhang, J W Zha, J Zhao, Z M Dang and G H Hu Polymer 54 1916 (2013)Google Scholar
  32. [32]
    G K Williamson and W H Hall Acta Metall. 1 22 (1953)CrossRefGoogle Scholar
  33. [33]
    S Sarkar, A Mondal, K Dey and R Ray RSC Adv. 5 81260 (2015)CrossRefGoogle Scholar
  34. [34]
    M Boutchich, A Jaffré, D Alamarguy, J Alvarez, A Barras, Y Tanizawa, R Tero, H Okada, T V Thu, J P Kleider and A Sandhu J. Phy. Conf. Ser. 433 012001 (2013)Google Scholar
  35. [35]
    Y W Liu, M X Guan, L Feng, S L Deng, J F Bao, S Y Xie, Z Chen, R B Huang and L S Zheng Nanotech. 24 025604 (2013)Google Scholar
  36. [36]
    A P Grosvenor, B A Kobe, M C Biesinger and N C Mclntyre Surf. & Interface Anal. 36 1564 (2004)Google Scholar
  37. [37]
    S Sarkar, A Mondal, K Dey and R Ray Mater. Res. Bull. 74 465 (2016)CrossRefGoogle Scholar
  38. [38]
    A M Rao, P C Eklund, S Bandow, A Thess and R E Smalley Nature 388 257 (1997)Google Scholar
  39. [39]
    D Lin, H Wu, R Zhang and W Pan Chem. Mater. 21 3479 (2009)Google Scholar
  40. [40]
    S Han, L Hu, N Gao, A A Al-Ghamdi and X S Fang Adv. Funct. Mater. 24 3725 (2014)CrossRefGoogle Scholar
  41. [41]
    R R Nair, P Blake, A N Grigorenko, K S Novoselov, T J Booth, T Stauber, N M R Peres and A K Geim Science 320 1308 (2008)Google Scholar
  42. [42]
    A L Fielding, O O Mykhaylyk, P S Armes, W P Fowler, V Mittal and S Fitzpatrick Langmuir 28 2536 (2012)Google Scholar
  43. [43]
    D M Grannan, J C Garland and D B Tanner Phy. Rev. Lett. 46 375 (1981)ADSCrossRefGoogle Scholar
  44. [44]
    Y Song, T W Noh, S Lee and J R Gaines Phys. Rev. B 33 904 (1986)CrossRefGoogle Scholar
  45. [45]
    G Catalan Appl. Phy. Lett. 88 102901 (2006)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations