Advertisement

Indian Journal of Physics

, Volume 93, Issue 2, pp 207–211 | Cite as

The angular dependence of ferromagnetic resonance in exchange coupling bilayer films with stress anisotropy

  • J. H. RongEmail author
  • L. Zhang
  • G. H. YunEmail author
  • L. B. Bao
Original Paper
  • 43 Downloads

Abstract

In this work, the ferromagnetic resonance modes are worked out considering in-plane anisotropy and out-of-plane anisotropy, respectively, in ferromagnetic/antiferromagnetic bilayer films. The ferromagnetic resonance frequency, magnetic susceptibility, and field linewidth with stress anisotropy have been investigated by using ferromagnetic resonance method. The results show that while applied magnetic field is applied along some directions, the ferromagnetic resonance frequency can be enhanced and field linewidth can be broaden by increasing the intensity of stress anisotropy field. Furthermore, the effect of stress anisotropy field proves substantially stronger for out-of-plane anisotropy than in-plane anisotropy.

Keywords

Ferromagnetic resonance Magnetic susceptibility Stress anisotropy Field linewidth 

PACS Nos.

76.50.+g 75.70.-i 75.70.cn 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11072104, and by the Science and Technology Research Projects in Colleges and Universities of Inner Mongolia of China under Grant No. NJZY16014, and by the Nature Science Foundation of Inner Mongolia of China under Grant No. 2012MS110.

References

  1. [1]
    W H Meiklejohn and C P Bean Phys. Rev. 102 1413 (1956)ADSCrossRefGoogle Scholar
  2. [2]
    J Smit and H G Beljers Philips Res. Rep. 10 113 (1955)Google Scholar
  3. [3]
    Z Celinski, K B Urquhart and B Heinrich J. Magn. Magn. Mater. 166 6 (1997)ADSCrossRefGoogle Scholar
  4. [4]
    D Spenato, S P Pogossian J. Magn. Magn. Mater. 285 79 (2005)ADSCrossRefGoogle Scholar
  5. [5]
    B Heinrich Can. J. Phys. 78 161 (2000)ADSCrossRefGoogle Scholar
  6. [6]
    R D McMichael, M D Stiles, P J Chen and W F EgeIhoff Jr Phys. Rev. B 58 8605 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    K Takano, R H Kodama, A E Berkowitz and W Cao and G Thomas Phys. Rev. Lett. 79 1130 (1997)ADSCrossRefGoogle Scholar
  8. [8]
    H Xi, K R Mountfifield and R M White J. Appl. Phys. 87 4367 (2000)ADSCrossRefGoogle Scholar
  9. [9]
    A Layadi J. Appl. Phys. 112 073901 (2012)ADSCrossRefGoogle Scholar
  10. [10]
    M Tafur, M A Sousa and F Pelegrini Appl. Phys. Lett. 102 062402 (2013)ADSCrossRefGoogle Scholar
  11. [11]
    P G Barreto, M A Sousa, F Pelegrini, W Alayo, F J Litterst and E Baggio-Saitovitch Appl. Phys. Lett. 104 202403 (2014)ADSCrossRefGoogle Scholar
  12. [12]
    C E Patton J. Appl. Phys. 39 3060 (1968)ADSCrossRefGoogle Scholar
  13. [13]
    P Padhan, W Prellier and B Mercey Phys. Rev. B 70 184419 (2004)ADSCrossRefGoogle Scholar
  14. [14]
    M Han, D C Jiles, J E Snyder, T A Lograsso and D L Schlagel J. Appl. Phys. 95 6947 (2004)ADSGoogle Scholar
  15. [15]
    P B He, Z D Li, A L Pan, Q Wan, Q L Zhang, R X Wang, Y G Wang, W M Liu and B S Zou Phys. Rev. B 78 054420 (2008)ADSCrossRefGoogle Scholar
  16. [16]
    D E Gonzalez-Chavez, R Dutra and W O Rosa Phys. Rev. B 88 104431 (2013)ADSCrossRefGoogle Scholar
  17. [17]
    J Griffiiths Nature 158 670 (1946)ADSCrossRefGoogle Scholar
  18. [18]
    C Kittel Phys. Rev. 73 155 (1948)ADSCrossRefGoogle Scholar
  19. [19]
    H Suhl Phys. Rev. 97 555 (1955)ADSCrossRefGoogle Scholar
  20. [20]
    V G Harris IEEE Trans. Magn. 48 1075 (2012)ADSCrossRefGoogle Scholar
  21. [21]
    S N Hsiao, F T Yuan, H W Chang, H W Huang, S K Chen and H Y Lee Appl. Phys. Lett. 94 232505 (2009)ADSCrossRefGoogle Scholar
  22. [22]
    K Sun, Q Li and H L Guo J. Alloys Compd. 663 645 (2016)CrossRefGoogle Scholar
  23. [23]
    J H Rong, H Wang and G H Yun Chin. J. Comput. Phys. 29 6 (2012)Google Scholar
  24. [24]
    V Erel and A D Freed Compos. Part B Eng. 120 152 (2017)CrossRefGoogle Scholar
  25. [25]
    M Buchmeier, D E Bürger, P A Grünberg, C M Schneider, R Meijers, R Calarco, C Raeder and M Farle Phys. Sta. Sol.(a) 203 1567 (2006)ADSCrossRefGoogle Scholar
  26. [26]
    B Heinrich, G Woltersdorf, R Urban and E Simanek J. Appl. Phys. 93 7545 (2003)ADSCrossRefGoogle Scholar
  27. [27]
    E Simanek Phys. Rev. B 67 144418 (2003)ADSCrossRefGoogle Scholar
  28. [28]
    A Layadi J. Appl. Phys. 87 1429 (2000)ADSCrossRefGoogle Scholar
  29. [29]
    L Zhang, J H Rong, G H Yun, D Wang and L B Bao Phys. B 502 5 (2016)ADSCrossRefGoogle Scholar
  30. [30]
    L Zhang, J H Rong, G H Yun, D Wang and L B Bao Mater. Res. Express 3 076101 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Inner Mongolia Key Lab of Nanoscience and Nanotechnology and School of Physical Science and TechnologyInner Mongolia UniversityHohhotChina
  2. 2.College of Physics and Electronic InformationInner Mongolia Normal UniversityHohhotChina

Personalised recommendations