Indian Journal of Physics

, Volume 93, Issue 2, pp 185–195 | Cite as

Surfactant-mediated solvothermal synthesis of CuSbS2 nanoparticles as p-type absorber material

  • Bincy John
  • G. Genifer Silvena
  • Shamima Hussain
  • M. C. Santhosh Kumar
  • A. Leo RajeshEmail author
Original Paper


The novel chalcostibite CuSbS2 had gained unique attention due to their dynamic nature as less toxic, cost-effective and earth abundant materials for the synthesis of an absorber layer in solar cell application. Herein, a facile and effective solvothermal method was used to enhance the sphere-like grain growth in the presence of polyvinylpyrrolidone (PVP) along with other precursor’s, followed by the deposition of CuSbS2 thin films using drop casting method. The synthesized nanoparticles and the deposited films were characterized for their structural, morphological, optical and electrical properties using different characterization techniques. X-ray diffraction (XRD) and Raman analysis revealed that as the amount of PVP increased, the crystallinity improved and the impurity phase formation reduced. High-resolution transmission electron microscope (HRTEM) with reduced crystallite size in the range of 2–5 nm and field emission scanning electron microscope (FESEM), exhibited sphere-shaped grains indicating the effect of PVP as surfactant for the growth of CuSbS2 nanomaterials. The average elemental composition of the nanoparticles had been determined using EDX analysis, and the result yielded Cu rich in all the samples. Optical studies using UV–Vis-NIR diffuse reflectance spectroscopy revealed that obtained CuSbS2 nanoparticles were having the absorption in the entire visible region and the direct band gap energy was in the range of 1.25 eV to 1.53 eV and that of photoluminescence spectrum gave the emission in the near IR region. The hall measurement studies showed that the deposited CuSbS2 films exhibited p-type conductivity. Devices were fabricated with the configuration of FTO/n-TiO2/p-CuSbS2/Ag, and the electrical properties were studied by recording the current- voltage (I-V) characteristics of the heterojunction device structures.


CuSbS2 nanoparticles Solvothermal method PVP surfactant Absorber layer Heterojunction Solar energy materials 


81.07.Wx 81.16.Be 88.40.H- 



One of the authors Ms. Bincy John thanks the University Grants Commission of India, for providing research fellowship (Maulana Azad National Fellowship, Grant No: F1-17.1/2016-17/MANF-2015-17-KER-53161). The authors would like to thank Dr. G. Amarendra, Scientist-In-Charge, and Dr. G. M. Bhalerao, Scientist-E UGC-DAE Consortium for Scientific Research, Kalpakkam, Tamilnadu, India, for providing sophisticated instrumentation facilities.


  1. [1]
    R B Balow, E J Sheets, M M Abu-Omar, and R Agrawal Chem. Mater. 27 2290 (2015)CrossRefGoogle Scholar
  2. [2]
    S Suehiro, K Horita, M Yuasa, T Tanaka, K Fujita, Y Ishiwata, K Shimanoe, and T Kida Inorg. Chem. 54 7840 (2015)Google Scholar
  3. [3]
    L Shi, Y Li, C Wu, and Y Dai J. Alloys Compd. 648 507 (2015)CrossRefGoogle Scholar
  4. [4]
    B Shu and Q Han 13 46 (2016)Google Scholar
  5. [5]
    A Wei, Z Yan, Y Zhao, M Zhuang, and J Liu Int. J. Hydrogen Energy 40 797 (2015)CrossRefGoogle Scholar
  6. [6]
    M X Zhuang, A X Wei, Y Zhao, J Liu, Z Q Yan, and Z Liu Int. J. Hydrogen Energy 40 806 (2015)CrossRefGoogle Scholar
  7. [7]
    S M McLeod, C J Hages, N J Carter, and R Agrawal Prog. Photovoltaics Res. Appl. 23 1550 (2015)CrossRefGoogle Scholar
  8. [8]
    S Ahn, S Rehan, D G Moon, Y-J Eo, S Ahn, J H Yun, A Cho, and J Gwak Green Chem. 19 1268 (2017)CrossRefGoogle Scholar
  9. [9]
    C K Miskin, W-C Yang, C J Hages, N J Carter, C S Joglekar, E A Stach, and R Agrawal Prog. Photovoltaics Res. Appl. 23 654 (2015)CrossRefGoogle Scholar
  10. [10]
    C Wadia, A P Alivisatos and D M Kammen, Environ. Sci. Technol. 43 2072 (2009)ADSCrossRefGoogle Scholar
  11. [11]
    D B Mitzi, O Gunawan, T K Todorov, K Wang, and S Guha Sol. Energy Mater. Sol. Cells 95 1421 (2011)CrossRefGoogle Scholar
  12. [12]
    S Chen, X G Gong, A Walsh, and S H Wei Appl. Phys. Lett. 96 4 (2010)Google Scholar
  13. [13]
    K Biswas, S Lany, and A Zunger Appl. Phys. Lett. 96 94 (2010)Google Scholar
  14. [14]
    Y Cao, M S Denny, J V Caspar, W E Farneth, Q Guo, A S Ionkin, L K Johnson, M Lu, I Malajovich, D Radu, D H Rosenfeld, K R Choudhury, and W Wu J. Am. Chem. Soc. 134 15644 (2012)CrossRefGoogle Scholar
  15. [15]
    J Bincy, G Genifer Silvena, and A Leo Rajesh Phys. B Condens. Matter 537 243 (2018)ADSCrossRefGoogle Scholar
  16. [16]
    C L McCarthy, P Cottingham, K Abuyen, E C Schueller, S P Culver, and R L Brutchey J. Mater. Chem. C 4 6230 (2016)CrossRefGoogle Scholar
  17. [17]
    K Ramasamy, H Sims, W H Butler, and A Gupta J. Am. Chem. Soc. 136 1587 (2014)CrossRefGoogle Scholar
  18. [18]
    S Ikeda, S Sogawa, Y Tokai, W Septina, T Harada, and M Matsumura RSC Adv. 4 40969 (2014)Google Scholar
  19. [19]
    Z Zhang, C Zhou, Y Liu, J Li, Y Lai, and M Jia Int. J. Electrochem. Sci. 8 10059 (2013)Google Scholar
  20. [20]
    Y Zou and J Jiang Mater. Lett. 123 66 (2014)CrossRefGoogle Scholar
  21. [21]
    Y Rodríguez-Lazcano, M T S Nair, and P K Nair J. Cryst. Growth 223 399 (2001)ADSCrossRefGoogle Scholar
  22. [22]
    J A Ramos Aquino, D L Rodriguez Vela, S Shaji, D A Avellaneda, and B Krishnan Phys. Status Solidi Curr. Top. Solid State Phys. 13 24 (2016)Google Scholar
  23. [23]
    A C Rastogi and N R Janardhana Thin Solid Films 565 285 (2014)ADSCrossRefGoogle Scholar
  24. [24]
    A Rabhi, M Kanzari, and B Rezig Mater. Lett. 62 3576 (2008)CrossRefGoogle Scholar
  25. [25]
    D Colombara, L M Peter, K D Rogers, J D Painter, and S Roncallo Thin Solid Films 519 7438 (2011)ADSCrossRefGoogle Scholar
  26. [26]
    S Banu, S J Ahn, S K Ahn, K Yoon, and A Cho Sol. Energy Mater. Sol. Cells 151 14 (2016)CrossRefGoogle Scholar
  27. [27]
    Z Liu, J Huang, J Han, T Hong, J Zhang, and Z Liu Phys. Chem. Chem. Phys. 18 16615 (2016)CrossRefGoogle Scholar
  28. [28]
    K M Koczkur, S Mourdikoudis, L Polavarapu, and S E Skrabalak Dalt. Trans. 44 17883 (2015)CrossRefGoogle Scholar
  29. [29]
    S V. Jadhav, D S Nikam, V M Khot, N D Thorat, M R Phadatare, R S Ningthoujam, A B Salunkhe, and S H Pawar New J. Chem. 37 3121 (2013)CrossRefGoogle Scholar
  30. [30]
    G Lu, S Li, Z Guo, O K Farha, B G Hauser, X Qi, Y Wang, X Wang, S Han, X Liu, J S Duchene, H Zhang, Q Zhang, X Chen, J Ma, S C J Loo, W D Wei, Y Yang, J T Hupp, et al. Nat. Chem. 4 310 (2012)CrossRefGoogle Scholar
  31. [31]
    D Liu, L Lin, S Ren, and S Fu J. Mater. Sci. 51 3111 (2016)ADSCrossRefGoogle Scholar
  32. [32]
    M Liu, Y Gong, Z Li, M Dou, and F Wang Appl. Surf. Sci. 387 790 (2016)ADSCrossRefGoogle Scholar
  33. [33]
    C Yan, Z Su, E Gu, T Cao, J Yang, J Liu, F Liu, Y Lai, J Li, and Y Liu RSC Adv. 2 10481 (2012)Google Scholar
  34. [34]
    T Rath, A J Maclachlan, M D Brown, and S A Haque J. Mater. Chem. A Mater. Energy Sustain. 3 24155 (2015)CrossRefGoogle Scholar
  35. [35]
    K Ramasamy, R K Gupta, H Sims, S Palchoudhury, S Ivanov, and A Gupta J. Mater. Chem. A 3 13263 (2015)CrossRefGoogle Scholar
  36. [36]
    J Bincy, G Genifer Silvena, and A Leo Rajesh, AIP Conf. Proc. 1832 50007 (2017)CrossRefGoogle Scholar
  37. [37]
    H C Gupta, M K Singh, and L M Tiwari J. Phys. Chem. Solids 64 531 (2003)ADSCrossRefGoogle Scholar
  38. [38]
    X Y Ye, Y M Zhou, Y Q Sun, J Chen, and Z Q Wang J. Nanoparticle Res. 11 1159 (2009)ADSCrossRefGoogle Scholar
  39. [39]
    C An, K Tang, Q Yang, and Y Qian Inorg. Chem. 42 8081 (2003)CrossRefGoogle Scholar
  40. [40]
    S Thiruvenkadam and A Leo Rajesh Int. J. Sci. Technol. Res. 3 38 (2014)Google Scholar
  41. [41]
    S Thiruvenkadam and A Leo Rajesh Ijser.Org 5 248 (2014)Google Scholar
  42. [42]
    J Bincy, G Genifer Silvena, and A Leo Rajesh Mater. Res. Bull. 95 267 (2017)CrossRefGoogle Scholar
  43. [43]
    F Long, S Chi, J He, J Wang, X Wu, S Mo, and Z Zou J. Solid State Chem. 229 228 (2015)ADSCrossRefGoogle Scholar
  44. [44]
    S Moosakhani, A A Sabbagh Alvani, R Mohammadpour, P M Hannula, Y Ge, and S P Hannula Mater. Lett. 215 157 (2018)CrossRefGoogle Scholar
  45. [45]
    K Takei, T Maeda, and T Wada Thin Solid Films 582 263 (2015)ADSCrossRefGoogle Scholar
  46. [46]
    A G Kannan, T E Manjulavalli, and J Chandrasekaran Procedia Eng. 141 15 (2016)Google Scholar
  47. [47]
    F E Loranca-Ramos, C J Diliegros-Godines, R Silva González, and M Pal Appl. Surf. Sci. 427 1099 (2018)ADSCrossRefGoogle Scholar
  48. [48]
    S A Manolache, L Andronic, A Duta, and A Enesca J. Optoelectron. Adv. Mater. 9 1269 (2007)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsSt. Joseph’s College (Autonomous)TiruchirappalliIndia
  2. 2.UGC-DAE Consortium for Scientific ResearchTamilnaduIndia
  3. 3.Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations