Advertisement

On the new wave behavior to the Klein–Gordon–Zakharov equations in plasma physics

  • H M Baskonus
  • T A Sulaiman
  • H Bulut
Original Paper
  • 8 Downloads

Abstract

In this study, the extended sinh-Gordon equation expansion method is used in constructing various exact solitary wave solutions to the Klein–Gordon–Zakharov equations. The Klein–Gordon–Zakharov equations is a nonlinear model describing the interaction between the Langmuir wave and the ion acoustic wave in a high-frequency plasma. We successfully construct some topological, non-topological, compound topological and non-topological, singular, compound singular solitons and singular periodic wave solutions. Under the choice of suitable values of the parameters, the 2D, 3D and contour graphs to some of the reported solutions are also plotted.

Keywords

The ShGEEM Klein–Gordon–Zakharov equations Plasma physics Wave solutions 

PACS Nos.

02.30.Hq 41.20.Jb 02.30.Rz 44.05.+e 

References

  1. [1]
    M Saravanan and S Dhamayanthi Chin. J. Phys. 55 79 (2017)CrossRefGoogle Scholar
  2. [2]
    S S Ray Chin. J. Phys. 55 2039 (2017)CrossRefGoogle Scholar
  3. [3]
    X Y Xie, B Tian, X Y Wu, H P Chai and Y Jiang Chin. J. Phys. 55 1369 (2017)CrossRefGoogle Scholar
  4. [4]
    K U Tariq and M Younis Optik 142 446 (2017)ADSCrossRefGoogle Scholar
  5. [5]
    E M E Zayed, A G Al-Nowehy and M E M Elshater Eur. Phys. J. Plus 132 259 (2017)CrossRefGoogle Scholar
  6. [6]
    A Mao, L Yang, A Qian and S Luan Appl. Math. Lett. 68 8 (2017)MathSciNetCrossRefGoogle Scholar
  7. [7]
    Z Kalogiratou, T Monovasilis J. Math. Chem. 37 271 (2005)MathSciNetCrossRefGoogle Scholar
  8. [8]
    H M Baskonus, T A Sulaiman, and H Bulut Optik 131 1036 (2017)ADSCrossRefGoogle Scholar
  9. [9]
    J H B Nijhoft and G H M Roelofs J. Phys. A: Math. Gen. 25 2403 (1992)ADSCrossRefGoogle Scholar
  10. [10]
    A R Seadawy and Results Phys Results Phys. 7 43 (2017)ADSCrossRefGoogle Scholar
  11. [11]
    , Baleanu and F Gao Proc. Romanian Acad. Ser. A 18 231 (2017)Google Scholar
  12. [12]
    X J Yang, F Gao and H M Srivastava J. Comput. Appl. Math.  https://doi.org/10.1016/j.cam.2017.10.007. (2017)Google Scholar
  13. [13]
    X J Yang, J A T Machado and D Baleanu Fractals 25 1740006 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    X J Yang, F Gao and H M Srivastava Comput. Math. Appl. 73 203 (2017)MathSciNetCrossRefGoogle Scholar
  15. [15]
    X J Yang, J A T Machado, D Baleanu and C Cattani Chaos 26 4960543 (2016)Google Scholar
  16. [16]
    F Gao, X J Yang and Y F Zhang Thermal Sci. 21 1833 (2017)CrossRefGoogle Scholar
  17. [17]
    F Gao, X J Yang and H M Srivastava Thermal Sci. 21 2307 (2017)CrossRefGoogle Scholar
  18. [18]
    X J Yang and F Gao Thermal Sci. 21 133 (2017)CrossRefGoogle Scholar
  19. [19]
    X J Yang, Y S Gasimov and F Gao Proc. Inst. Math. Mech. 43 123 (2017)Google Scholar
  20. [20]
    Y Guo Dyn. Syst. 32 490 (2017)MathSciNetCrossRefGoogle Scholar
  21. [21]
    Y Guo Electron. J. Qual. Theory Differ. Equ. 3 1 (2009)ADSGoogle Scholar
  22. [22]
    X J Yang Appl. Math. Lett. 64 193 (2017)MathSciNetCrossRefGoogle Scholar
  23. [23]
    C Cattani, T A Sulaiman, H M Baskonus and H Bulut Opt. Quant. Electron. 50 138 (2018)CrossRefGoogle Scholar
  24. [24]
    H Bulut, T A Sulaiman, H M Baskonus and T Akturk Opt. Quant. Electron. 50 134 (2018)CrossRefGoogle Scholar
  25. [25]
    M A Helal and A R Seadawy Math. Phys. 62 839 (2011)Google Scholar
  26. [26]
    X LüNonlinear Dyn. 81 239 (2015)CrossRefGoogle Scholar
  27. [27]
    T A Sulaiman, T Akturk, H Bulut and H M Baskonus J. Electromagn. Waves Appl.  https://doi.org/10.1080/09205071.2017.1417919 (2017)Google Scholar
  28. [28]
    S S Ray Commun. Nonlinear Sci. Numer. Simul. 13 1311 (2008)ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    H M Baskonus, H Bulut and T A Sulaiman Indian J. Phys. 135 327 (2017)Google Scholar
  30. [30]
    D E Pelinovsky Chaos 15 037115 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    H Bulut, T A Sulaiman and B Demirdag, Nonlinear Dyn.  https://doi.org/10.1007/s11071-017-3997-9 (2017)Google Scholar
  32. [32]
    S T R Rizvi, I Ali, K Ali and M Younis Opt. Int. J. Light Electron. Opt. 127 5328 (2016)CrossRefGoogle Scholar
  33. [33]
    H Bulut, T A Sulaiman, H M Baskonus and T Akturk Opt. Quant. Electron. 50 19 (2018)CrossRefGoogle Scholar
  34. [34]
    K Ali, S R R Rizvi, S Ahmad, S Bashir and M Younis, Optik 142 327 (2017)ADSCrossRefGoogle Scholar
  35. [35]
    M Eslami Nonlinear Dyn. 85 813–816 (2016)CrossRefGoogle Scholar
  36. [36]
    S T R Rizvi and K Ali Nonlinear Dyn. 87 1967 (2017)CrossRefGoogle Scholar
  37. [37]
    M Eslami and H Rezazadeh Calcolo 53 475 (2016)MathSciNetCrossRefGoogle Scholar
  38. [38]
    O A Ilhan, H Bulut, T A Sulaiman and H M Baskonus Indian J. Phys.  https://doi.org/10.1007/s12648-018-1187-3 (2018)Google Scholar
  39. [39]
    C Cattani Int. J. Fluid Mech. Res. 30 23 (2003)Google Scholar
  40. [40]
    H Bulut, T A Sulaiman and H M Baskonus Optik 163 1 (2018)ADSCrossRefGoogle Scholar
  41. [41]
    H Bulut, T A Sulaiman and H M Baskonus Optik 163 49 (2018)ADSCrossRefGoogle Scholar
  42. [42]
    H M Baskonus, T A Sulaiman Opt. Quant. Electron. 50 165 (2018)CrossRefGoogle Scholar
  43. [43]
    A Sardar, K Ali, S T R Rizvi, M Younis, Q Zhou, E Zerrad, A Biswas and A Bhrawy J. Nanoelectron. Optoelectron. 11 382 (2016)CrossRefGoogle Scholar
  44. [44]
    J I Segata Commu. Partial Differ. Equ. 40 309 (2015)CrossRefGoogle Scholar
  45. [45]
    F S Khodadad, F Nazari, M Eslami and H Rezazadeh Opt. Quantum Electron. 49 384 (2017)CrossRefGoogle Scholar
  46. [46]
    M Eslami, F S Khodadad, F Nazari and H Rezazadeh Opt. Quantum Electron. 49 391 (2017)CrossRefGoogle Scholar
  47. [47]
    M Eslami, H Rezazadeh, M Rezazadeh and S S Mosavi Opt. Quantum Electron. 49 279 (2017)CrossRefGoogle Scholar
  48. [48]
    M Eslami Appl. Math. Comput. 285 141 (2016)MathSciNetGoogle Scholar
  49. [49]
    M Eslami and M Rezazadeh Nonlinear Dyn. 83 731 (2016)CrossRefGoogle Scholar
  50. [50]
    M Ekici, M Rezazadeh and M Eslami Nonlinear Dyn. 84 669 (2016)CrossRefGoogle Scholar
  51. [51]
    M Rezazadeh, M Eslami and A Biswas Nonlinear Dyn. 80 387 (2015)CrossRefGoogle Scholar
  52. [52]
    A Biswas, M Mirzazadeh, M Eslami, D Milovic and M Belic Frequenz 68 387 (2014)CrossRefGoogle Scholar
  53. [53]
    M Mirzazadeh, M Eslami, E Zerrad, M F Mahmood, A Biswas and M Belic Nonlinear Dyn. 81 1933 (2015)CrossRefGoogle Scholar
  54. [54]
    M Mirzazadeh, M Ekici, M Eslami, E V Krishnan, S Kumar and A Biswas Nonlinear Anal. Model. Control 22 441 (2017)MathSciNetCrossRefGoogle Scholar
  55. [55]
    M Eslami and M Mirzazadeh Ocean Eng. 83 133 (2014)CrossRefGoogle Scholar
  56. [56]
    A Neirameh and M Eslami Sci. Iran. 24 715 (2017)Google Scholar
  57. [57]
    M Eslami and A Neirameh Opt. Quantum Electron. 50 47 (2018)CrossRefGoogle Scholar
  58. [58]
    Z Yan and H Zhang Phys. Lett. A 252 291 (1999)ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    H M Baskonus, T A Sulaiman and H Bulut Opt. Quant. Electron. 50 14 (2018)CrossRefGoogle Scholar
  60. [60]
    Z Y Zhang, J Zhong, S S Dou, J Liu, D Peng and T Gao Romanian Rep. Phys. 64 1155 (2013)Google Scholar
  61. [61]
    S G Thornhill and D Haar Phys. Rep. 43 43 (1978)ADSCrossRefGoogle Scholar
  62. [62]
    X Xian-Lin and T Jia-Shi Commun. Theor. Phys. 50 1047 (2008)ADSCrossRefGoogle Scholar
  63. [63]
    H Bulut, T A Sulaiman and H M Baskonus Superlattices Microstruct.  https://doi.org/10.1016/j.spmi.2017.12.009 (2018)Google Scholar
  64. [64]
    H Triki and N Boucerredj Appl. Math. Comput. 227 341 (2014)MathSciNetGoogle Scholar
  65. [65]
    Y Shang, Y Huang and W Yuan Comput. Math. Appl. 56 1441 (2008)MathSciNetCrossRefGoogle Scholar
  66. [66]
    Z Zhang, F L Xia and X P Li Pramana 80 41 (2013)ADSCrossRefGoogle Scholar
  67. [67]
    M Ekici, D Duran and A Sonmezoglu Comput. Math. 2013 716279 (2013)Google Scholar
  68. [68]
    M Akbari and N Taghizadeh Ain Shams Eng. J. 5 979 (2014)CrossRefGoogle Scholar
  69. [69]
    N A Kudryashov Chaos Soliton Fract 24 1217 (2005)ADSCrossRefGoogle Scholar
  70. [70]
    Q Shi, Q Xiao and X Liu Appl. Math. Comput. 218 9922 (2012)MathSciNetGoogle Scholar
  71. [71]
    T Wang, J Chen and L Zhang J. Comput. Appl. Math. 205 430 (2007)ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    H Fan, Y Cheng, Y Zhu, C Tian and D Dai Sch. J. Eng. Technol. 3 240 (2015)Google Scholar
  73. [73]
    E W Weisstein (New York: CRC Press) (2002)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringMunzur UniversityTunceliTurkey
  2. 2.Department of MathematicsFirat UniversityElazigTurkey
  3. 3.Department of MathematicsFederal UniversityDutseNigeria
  4. 4.Department of Mathematics EducationFinal International UniversityKyreniaCyprus

Personalised recommendations