Advertisement

Investigation of cylindrical shock waves in dusty plasma

  • A. Nazari-Golshan
Original Paper
  • 16 Downloads

Abstract

Electronegative dusty plasma composed of Boltzmann electrons, Boltzmann negative ions, inertial positive ions and charge fluctuating dust has been considered. The fractional modified Burgers’ (FMB) equation, which is derived using Euler–Lagrange variational technique, is analytically obtained and solved for studying the cylindrical geometry effect on the propagation of the dust ion acoustic shock wave. The Laplace homotopy perturbation method, the so-called LHPM is applied to solve the FMB equation. The effect of the fractional parameter, positive ion number density at equilibrium, the number of equilibrium electrons residing on the dust grain surface and shock velocity on the behavior of the shock waves in the dusty plasma has been investigated.

Keywords

Dust ion acoustic waves Shock wave Laplace transforms homotopy perturbation method Fractional modified Burgers’ equation Negative ions 

PACS Nos.

52.27.Lw 52.35.Fp 52.35.Mw 52.35.Tc 

References

  1. [1]
    P K Shukla and V P Silin Phys. Scr. 45 508 (1992)ADSCrossRefGoogle Scholar
  2. [2]
    A Barkan N D’Angelo and R L Merlino Planet. Space Sci. 44 239 (1996)ADSCrossRefGoogle Scholar
  3. [3]
    P Borah D Gogoi and N Das Phys. Scr. 91 015603 (2016)ADSCrossRefGoogle Scholar
  4. [4]
    D-N Gao Y R Ma Y Yang J Zhang and W-S Duan Indian J. Phys. 90 1313 (2016)ADSCrossRefGoogle Scholar
  5. [5]
    M A H Khaled Indian J. Phys. 88 647 (2014)ADSCrossRefGoogle Scholar
  6. [6]
    [6] A Saha and P Chatterjee Braz. J. Phys. 45 (4) 419 (2015)ADSCrossRefGoogle Scholar
  7. [7]
    A Saha and P Chatterjee Phys. Plasmas 20 (2) 022111 (2013)ADSCrossRefGoogle Scholar
  8. [8]
    G Mandal K Roy and P Chatterjee Indian J. Phys. 83 365 (2009)ADSCrossRefGoogle Scholar
  9. [9]
    N N Rao P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)ADSCrossRefGoogle Scholar
  10. [10]
    A Barkan R L Merlino and N D’Angelo Phys. Plasmas 2 3563 (1995)ADSCrossRefGoogle Scholar
  11. [11]
    H Alinejad Phys. Lett. A 375 1005 (2011)ADSCrossRefGoogle Scholar
  12. [12]
    S K El-Labany W F El-Taibany and M Mahmoud Phys. Scr. 87 055502 (2013)ADSCrossRefGoogle Scholar
  13. [13]
    P K Shukla and A A Mamun Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing Ltd.) (2002)CrossRefGoogle Scholar
  14. [14]
    A A Mamun P K Shukla and B Eliasson Phys. Plasmas 16 114503 (2009)ADSCrossRefGoogle Scholar
  15. [15]
    S H Kim and R L Merlino Phys. Plasmas 13 052118 (2006)ADSCrossRefGoogle Scholar
  16. [16]
    M Rosenberg R L Merlino Planet. Space Sci. 55 1464 (2007)ADSCrossRefGoogle Scholar
  17. [17]
    A A Mamun R A Cairns and P K Shukla Phys. Lett. A 373 2355 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    M Larsson W D Geppert and G Nyman Rep. Prog. Phys. 75 066901 (2012)ADSCrossRefGoogle Scholar
  19. [19]
    E C Whipple T G Northrop D A Mendis and J. Geophys. Res. 90 7405 (1985)ADSCrossRefGoogle Scholar
  20. [20]
    P K Shukla and B Eliasson Rev. Mod. Phys. 81 25 (2009)ADSCrossRefGoogle Scholar
  21. [21]
    G E Morfill and A V Ivlev Rev. Mod. Phys. 81 1353 (2009)ADSCrossRefGoogle Scholar
  22. [22]
    A A Mamun P K Shukla and B Eliasson Phys. Rev. E 80 046406 (2009)ADSCrossRefGoogle Scholar
  23. [23]
    A A Mamun and S Tasnim Phys. Plasmas 17 073704 (2010)ADSCrossRefGoogle Scholar
  24. [24]
    M S Zobaer, K N Mukta, L Nahar, N Roy and A A Mamun Phys. Plasmas 20 043704 (2013)ADSCrossRefGoogle Scholar
  25. [25]
    S A El-Wakil, E M Abulwafa, E K El-Shewy and A A Mahmoud Phys. Plasmas 18 092116 (2011).ADSCrossRefGoogle Scholar
  26. [26]
    S Guo, L Mei and Z Zhang Phys. Plasmas 22 052306 (2015)ADSCrossRefGoogle Scholar
  27. [27]
    A Nazari-golshan and S S Nourazar Phys. Plasmas 20 103701 (2013)ADSCrossRefGoogle Scholar
  28. [28]
    A Nazari-golshan, S S Nourazar, P Parvin and H Ghafoori-Fard Astrophys. Space Sci. 349 205 (2014)ADSCrossRefGoogle Scholar
  29. [29]
    S A El-Wakil, E M Abulwafa, A Elgarayhi, E K El-Shewy, A A Mahmoud and A M Tawfik Astrophys Space Sci. 350 591 (2014)ADSCrossRefGoogle Scholar
  30. [30]
    A Nazari-golshan Phys. Plasmas 23 082109 (2016)ADSCrossRefGoogle Scholar
  31. [31]
    H Schamel J. Plasma Phys. 9 377 (1973)ADSCrossRefGoogle Scholar
  32. [32]
    S Maxon and J Vievelli Phys. Rev. Lett. 32 4 (1974)ADSCrossRefGoogle Scholar
  33. [33]
    O P Agrawal J. Math. Anal. Appl. 337 1 (2008)MathSciNetCrossRefGoogle Scholar
  34. [34]
    S I Muslih and O P Agrawal Int. J. Theor. Phys. 49 270 (2010)CrossRefGoogle Scholar
  35. [35]
    O P Agrawal J. Phys. A Math. Theor. 40 6287 (2007)Google Scholar
  36. [36]
    S G Samko, A A Kilbas and O I Marichev Fractional Integrals and Derivatives: Theory and Applications (New York: Gordon and Breach) (1998)zbMATHGoogle Scholar
  37. [37]
    I Podlubny Fractional Differential Equations (Academic Press, San Diego) (1999)zbMATHGoogle Scholar
  38. [38]
    S S Nourazar M Soori and A Nazari-Golshan Aust. J. Basic Appl. Sci. 5 1400 (2011)Google Scholar
  39. [39]
    A Nazari-Golshan, S S Nourazar, H Ghafoori-Fard, A Yildirim and A Campo Appl. Math. Lett. 26 1018 (2013)MathSciNetCrossRefGoogle Scholar
  40. [40]
    S S Nourazar A Nazari-Golshan Indian J. Phys. 89 61 (2015)ADSCrossRefGoogle Scholar
  41. [41]
    G Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Boston: Kluwer) (1994)CrossRefzbMATHGoogle Scholar
  42. [42]
    S S Nourazar, A Nazari-Golshan, A Yildirim and M Nourazar Z. Naturforsch. 67a 355 (2012)ADSGoogle Scholar
  43. [43]
    J H He Commun. Nonlinear Sci. Numer. Simul. 2 230 (1997)ADSCrossRefGoogle Scholar
  44. [44]
    S S Nourazar A Nazari-Golshan and M Nourazar Phys. Int. 2 8 (2011)CrossRefGoogle Scholar
  45. [45]
    Z Zhang Turk. J. Phys. 32 235 (2008)Google Scholar
  46. [46]
    Z Zhang, Y Li, Z Liu and X Miao Commun. Nonlinear Sci. Numer. Simul. 16 (8) 3097 (2011)ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Z Zhang, Z Liu, X Miao and Y Chen Phys. Lett. A 375 1275 (2011)ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    Z Zhang, X Gan, and D Yu Z. Naturforsch. 66a 721 (2011)ADSGoogle Scholar
  49. [49]
    Z Zhang, F Xia and X Li Pramana 80 (1) 41(2013)ADSCrossRefGoogle Scholar
  50. [50]
    X Miao and Z Zhang Commun. Nonlinear Sci. Numer. Simul. 16 (11) 4259 (2011)ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    Z Zhang, J Huang, J Zhong, S Dou, J Liu, D Peng and T Gao Pramana 82 (6) 1011 (2014)ADSCrossRefGoogle Scholar
  52. [52]
    Z Zhang and J Wu Opt. Quantum Electron. 49 1 (2017)CrossRefGoogle Scholar
  53. [53]
    Z Zhang, J Huang, J Zhong, S S Dou, J Liu, D Peng and T Gao Rom. J. Phys. 58 (7) 749 (2013)Google Scholar
  54. [54]
    Z Zhang Rom. J. Phys. 9 1384 (2015)Google Scholar
  55. [55]
    Z Zhang, X Gan, D Yu, Y Zhang and X Li Commun. Theor. Phys. 57 764 (2012)ADSCrossRefGoogle Scholar
  56. [56]
    Z Zhang Turk. J. Phys. 37 259 (2013)Google Scholar
  57. [57]
    Z Zhang, Y Zhang, X Gan and D Yu Zeitschrift fur Naturforschung 67a 167 (2012).ADSGoogle Scholar
  58. [58]
    Z Zhang, Z Liu, X Miao and Y Chen Appl. Math. Comput. 216 3064 (2010)MathSciNetGoogle Scholar
  59. [59]
    Z Zhang, J Huang, J Zhong, S S Dou, J Liu, D Peng and T Gao Rom. J. Phys. 65 (4) 1155 (2013)Google Scholar
  60. [60]
    A J Coates, F J Crary, G R Lewis, D T Young, J H Waiter and E C Sittler Geophys. Res. Lett. 34 L22103 (2007)ADSCrossRefGoogle Scholar
  61. [61]
    G Adomian Nonlinear Stochastic Operator Equations. (San Diego: Academic Press) (1986)zbMATHGoogle Scholar
  62. [62]
    J H He Int. J. Turbo Jet-Engines 14 23 (1997)ADSGoogle Scholar
  63. [63]
    J H He Chaos Solitons Fractals 19 847 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Physics DepartmentShahed UniversityTehranIran

Personalised recommendations