Advertisement

Indian Journal of Physics

, Volume 93, Issue 1, pp 93–99 | Cite as

Nanosecond mode-locked erbium doped fiber laser based on zinc oxide thin film saturable absorber

  • I. A. M. Alani
  • Bilal A. Ahmad
  • M. H. M. Ahmed
  • A. A. Latiff
  • A. H. H. Al-Masoodi
  • M. Q. Lokman
  • S. W. HarunEmail author
Original Paper
  • 69 Downloads

Abstract

In this paper, we report a nanosecond mode locked erbium doped fiber laser (EDFL) using zinc oxide (ZnO) nanoparticles as a saturable absorber (SA) for the first time. Due to its excellent optical properties, in particular a high nonlinear optical response and fast recovery time, ZnO nanoparticles can be used as a saturable absorber device for pulsed laser generation. For easy integration into the laser cavity, the ZnO nanoparticles were imbedded into a polymer film using a seeding solution technique. 400 ns mode locked pulse train was successfully obtained at a relatively low threshold pump power of 45.4 mW. The output laser operates at the fundamental frequency of 1 MHz with a center wavelength of 1558.34 nm. The highest pulse energy and peak power achieved by the laser are estimated at 11.6 nJ and 27.3 mW respectively at the maximum available pump power of 142 mW. The results show that the SA derived from ZnO nanoparticles is capable of producing nanosecond mode locked EDFL for possible applications that require high pulse energy and medium output power.

Keywords

Fiber lasers Modulation Tuning Mode locking Zinc oxide nanoparticles 

PACS Nos.

42.55.Wd 42.60.Fc 42.60.Gd 

Notes

Funding

The funding was provided by Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya (Grand No. RU005J-2016).

References

  1. [1]
    F Dausinger and F Lichtner Springer Series Topics in Applied Physics (Berlin: Springer) 96 (2004)Google Scholar
  2. [2]
    R Osellame, G Cerullo and R Ramponi Femtosecond Laser Micromachining: Photonic and Microfluidic (Berlin: Springer) 123 (2012)CrossRefGoogle Scholar
  3. [3]
    M E Fermann, A Galvanauskas and G Sucha Ultrafast Lasers: Technology and Applications (Boca Raton: CRC Press) 80 (2002)CrossRefGoogle Scholar
  4. [4]
    Z C Tiu, S J Tan, H Ahmad and S W Harun Chin. Opt. Lett. 12 113202 (2014)ADSCrossRefGoogle Scholar
  5. [5]
    P Z Liu, J Hou, B Zhang, S P Chen and J B Chen Laser Phys. 22 273 (2012)ADSCrossRefGoogle Scholar
  6. [6]
    X Liu, L Zhan, S Luo, Z Gu, J Liu, Y Wang, and Q Shen Opt. Express 20 7088 (2012)ADSCrossRefGoogle Scholar
  7. [7]
    M Chernysheva, A Rozhin, Y Fedotov, C Mou, R Arif, S M Kobtsev and S K Turitsyn Nanophotonics 6 1 (2017)ADSCrossRefGoogle Scholar
  8. [8]
    D Mohammed and A Al-Janabi Laser Phys. 26 115108 (2016)ADSCrossRefGoogle Scholar
  9. [9]
    X He, D Wang and Z B Liu IEEE Photon. Technol. Lett. 2 360 (2014)ADSCrossRefGoogle Scholar
  10. [10]
    A H H Al-Masoodi, F Ahmad, H Ahmad and S W Harun J. Russ. Laser Res. 36 389 (2015)CrossRefGoogle Scholar
  11. [11]
    K Y Lau, F D Muhammad, A A Latif, M A Bakar, Z Yusoff and M A Mahdi Opt. Laser Technol. 94 221 (2017)ADSCrossRefGoogle Scholar
  12. [12]
    N H M Apandi, F Ahmad, S Ambran, M Yamada and S W Harun Materials Science and Engineering Conference Series (2017)Google Scholar
  13. [13]
    H Ahmad, M R K Soltanian, L Narimani, I S Amiri, A Khodaei and S W Harun IEEE Photon. J. 7 1 (2015)Google Scholar
  14. [14]
    P Yan, H Chen, A Liu, K Li, S Ruan, J Ding and T Guo IEEE J. Sel. Top. Quantum Electron. 23 1 (2017)CrossRefGoogle Scholar
  15. [15]
    M H M Ahmed, A A Latiff, H Arof, H Ahmad and S W Harun IET Optoelectron. 10 169 (2016)CrossRefGoogle Scholar
  16. [16]
    H Chen, I L Li, S Ruan, T Guo and P Yan Opt. Eng. 55 081318 (2016)ADSCrossRefGoogle Scholar
  17. [17]
    M H M Ahmed, A A Latiff, H Arof and S W Harun Laser Phys. Lett. 13 095104 (2016)ADSCrossRefGoogle Scholar
  18. [18]
    A H H Al-Masoodi, M H M Ahmed, A A Latiff, H Arof and S W Harun Chin. Phys. Lett. 33 054206 (2016)ADSCrossRefGoogle Scholar
  19. [19]
    A A Latiff, M F M Rusdi, Z Jusoh, M Yasin, H Ahmad and S W Harun Optoelectron. Adv. Mater. 10 801 (2016)Google Scholar
  20. [20]
    Z L Wang J. Phys. Condens. Matter 16 R829 (2004)ADSCrossRefGoogle Scholar
  21. [21]
    C Soci, A Zhang, B Xiang, S A Dayeh, D P R Aplin, J Park and D Wang Nano Lett. 7 1003 (2007)ADSCrossRefGoogle Scholar
  22. [22]
    Z S Salleh, E I Ismail, N A Kadir, A A Latiff, M Yasin, Z Jusoh, S W Harun and H Arof J. Nanomater. Biostruct. 11 1173 (2016)Google Scholar
  23. [23]
    D Mohammed, W.A. Khaleel and A. Al-Janabi Opt. Laser Technol. 97 106 (2017)ADSCrossRefGoogle Scholar
  24. [24]
    A Nady, M H M Ahmed, A Numan, S Ramesh, A A Latiff, C H R Ooi, H Arof and S W Harun J Mod. Opt. 64 1315 (2017)ADSCrossRefGoogle Scholar
  25. [25]
    H Ahmad, M A M Salim, M F Ismail and S W Harun Laser Phys. 26 115107 (2016)ADSCrossRefGoogle Scholar
  26. [26]
    N A Aziz, A A Latiff, M Q Lokman, E Hanafi and S W Harun Chin. Phys. Lett. 34 044202 (2017)ADSCrossRefGoogle Scholar
  27. [27]
    H Ahmad, C S J Lee, M A Ismail, Z A Ali, S A Reduan, N E Ruslan and S W Harun Opt. Commun. 381 72 (2016)ADSCrossRefGoogle Scholar
  28. [28]
    H Ahmad, C S J Lee, M A Ismail, Z A Ali, S A Reduan, N E Ruslan and S W Harun Appl. Opt. 55 4277 (2016)ADSCrossRefGoogle Scholar
  29. [29]
    H Xia, H Li, Z Wang, Y Chen, X Zhang, X Tang and Y Liu Opt. Commun. 330 147 (2014)ADSCrossRefGoogle Scholar
  30. [30]
    M A Ismail, S W Harun, N R Zulkepely, R M Nor, F Ahmad and H Ahmad Appl. Opt. 51 8621 (2012)ADSCrossRefGoogle Scholar
  31. [31]
    R I Woodward, E J R Kelleher, T H Runcorn, S Loranger, D Popa, V J Wittwer and J R Taylor Opt. Lett. 40 387 (2015)Google Scholar
  32. [32]
    W H Renninger, A Chong and F W Wise Opt. Lett. 33 3025 (2008)ADSCrossRefGoogle Scholar
  33. [33]
    X Wu, D Y Tang, H Zhang and L M Zhao Opt. Express 17 5580 (2009)ADSCrossRefGoogle Scholar
  34. [34]
    L Chen, M Zhang, C Zhou, Y Cai, L Ren and Z Zhang Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America (2009)Google Scholar
  35. [35]
    J Xu, S Wu, J Liu, Q Wang, Q H Yang and P Wang Opt. Commun. 285 4466 (2012)ADSCrossRefGoogle Scholar
  36. [36]
    P Jamdagni, P Khatri and J Rana J. King Saud Univ. - Sci. 30 168 (2018)CrossRefGoogle Scholar
  37. [37]
    T C Damen, S P S Port and B Tell Phys. Rev. 142 570 (1966)ADSCrossRefGoogle Scholar
  38. [38]
    M Yoshikawa, K Inoue, T Nakagawa, H Ishida, N Hasuike and H Harima Appl. Phys. Lett. 92 113115 (2008)ADSCrossRefGoogle Scholar
  39. [39]
    S S Gaikwad, A C Gandhi, S D Pandit, J Pant, T S Chan, C L Cheng, Y R Ma and S Y Wu J. Mater. Chem. C 2 7264 (2014)CrossRefGoogle Scholar
  40. [40]
    D Das and P. Mondal RSC Adv. 4 35735 (2014)CrossRefGoogle Scholar
  41. [41]
    D Popa, Z Sun, F Torrisi, T Hasan, F Wang and A C Ferrari Appl. Phys. Lett. 97 203106 (2010)ADSCrossRefGoogle Scholar
  42. [42]
    Y Feng, N Dong, G Wang, Y Li, S Zhang, K Wang, L Zhang, W J Blau and J Wang Opt. Express 23 559 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  3. 3.Centre of Telecommunication Research and InnovationUniversiti Teknikal Malaysia MelakaHang Tuah JayaMalaysia
  4. 4.Communication Engineering DepartmentAl-Mamoon University CollegeBaghdadIraq

Personalised recommendations