Advertisement

The effect of Sn substitution on the Al sites in full Heusler compound Fe2VAl

  • F. Dahmane
  • B. Doumi
  • R. Khenata
  • X. T. Wang
  • S. Bin Omran
  • D. P. Rai
  • A. Tadjer
Original Paper

Abstract

A first-principles method has been employed to determine the electronic, magnetic and structural characteristics of the full-Heusler alloys Fe2VAl with Sn doping. All the calculations were performed by using a computational code based on full-potential linearized augmented plane wave method called WIEN2k. The electron exchange–correlation is treated by the generalized gradient approximation within a scheme developed by Perdew, Burke and Ernzerhof (PBE-GGA). The electronic band structures of Fe2VAl1−xSnx (x = 0, 0.25, 0.50, 0.75) compounds show that the majority-spin (spin-up) exhibits a metallic characteristic, whereas the minority-spin (spin-dn) have an energy band gap. Our calculations predict that Fe2VAl1−xSnx compounds are half-metallic ferromagnets with an integer value of magnetic moment, 0, 1, 2, and 3 μB, respectively. Our findings suggest that these materials are potential candidates for manufacturing spintronic devices.

Keywords

Heusler alloys Half-metallicity Magnetic moment First principle calculations 

PACS Nos.

71.15.Mb 71.20.−b 75.90. +w 

Notes

Acknowledgements

For the authors “R.K and S.B.O” this project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH) King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number: 11-NAN1465-02.

References

  1. [1]
    T Graf, C Felser and S S P Parkin Prog. Solid State Chem. 39 1 (2011)CrossRefGoogle Scholar
  2. [2]
    J Kübler, A R Williams and C B Sommers Phys. Rev. B 28 1745 (1983)ADSCrossRefGoogle Scholar
  3. [3]
    M Yin, P Nash and S Chen Intermetallics 57 34 (2015)CrossRefGoogle Scholar
  4. [4]
    R K Guo, G D Liu, X T Wang, H Rozale, LY Wang, R Khenata, ZM Wu and XF Dai RSC Adv. 6 109394 (2016)CrossRefGoogle Scholar
  5. [5]
    L. Zhang, Z. X Cheng, X T Wang, R Khenata and H Rozale J. Superconduc. Novel Magn. 31 189 (2018)CrossRefGoogle Scholar
  6. [6]
    X Wang, Z Cheng, R Khenata, Y Wu, L Wang and G Liu J. Magn. Magn. Mater. 444 313 (2017)ADSCrossRefGoogle Scholar
  7. [7]
    N T Mahmoud, J M Khalifeh, A A Mousa, H K Juwhari and B A Hamad Physica B 430 58 (2017)Google Scholar
  8. [8]
    R A de Groot, F M Muller, V P G Engen and K H J Buschow Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  9. [9]
    Y Nishino Intermetallics 8 1233 (2000).CrossRefGoogle Scholar
  10. [10]
    Y Nishino, M Kato, S Asano, K Soda, M Hayasaki and U Mizutani Phys. Rev. Lett. 79 1909 (1997)ADSCrossRefGoogle Scholar
  11. [11]
    G Y Guo, G A Botton and Y Nishino J. Phys.: Condens. Matter 10 L119 (1998)ADSGoogle Scholar
  12. [12]
    B Xu, X Li, G Yu, J Zhang, S Ma, Y Wang and L Yi J. Alloys Compd. 565 22 (2013)CrossRefGoogle Scholar
  13. [13]
    S S Shastri and S K Pandey Comput. Mater. Sci. 143 316 (2018)CrossRefGoogle Scholar
  14. [14]
    M Belkhouane, S Amari, A Yakoubi, A Tadjer, S Méçabih, G Murtaza, S Bin Omran and R Khenata J. Magn. Magn. Mater. 377 211 (2015)ADSCrossRefGoogle Scholar
  15. [15]
    M Khalfa, H Khachai, F Chiker, N Baki, K Bougherara, A Yakoubi, G Murtaza, M Harmel, M S Abu-Jafar, S Bin Omran and R. Khenata Int. J. Modern Phys. B 29 1550229 (2015)ADSCrossRefGoogle Scholar
  16. [16]
    S Maier, S Denis, S Adam, J C Crivello, J M Joubert and E Alleno Acta Mater. 121 126 (2016)CrossRefGoogle Scholar
  17. [17]
    N I Kourov, V V Marchenkov, A V Korolev, L A Stashkova, S M Emel’yanova and H W Weber Phys. Solid State 57 700 (2015)ADSCrossRefGoogle Scholar
  18. [18]
    P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)ADSCrossRefGoogle Scholar
  19. [19]
    W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)ADSCrossRefGoogle Scholar
  20. [20]
    P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology) (2001)Google Scholar
  21. [21]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett 77 3865 (1996)ADSCrossRefGoogle Scholar
  22. [22]
    F D Murnaghan Proc. Natl. Acad. Sci. USA 30 244 (1944)ADSCrossRefGoogle Scholar
  23. [23]
    X P Wei et al J. Magn. Magn. Mater. 323 1606 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    N Xing, Y Gong, W Zhang, J Dong and H Li Comput. Mater. Sci. 45 489 (2009)CrossRefGoogle Scholar
  25. [25]
    V K Jain, V Jain, N Lakshmi, A R Chandra and K Venugopalan Comput. Mater. Sci. 108 56 (2015)CrossRefGoogle Scholar
  26. [26]
    J M D Coey, M Venkatesan and M A Bari Lect. Notes Phys. 595 377(2002)ADSCrossRefGoogle Scholar
  27. [27]
    27. C Felser, G H Fecher and B Balke Angew. Chem. 46 668 (2007)Google Scholar
  28. [28]
    H C Kandpal, G H Fecher and C Felser J. Phys. D: Appl. Phys. 40 No 6 1587 (2007)Google Scholar
  29. [29]
    C M Fang, G A de Wijs and R A de Groot J. Appl. Phys. 91 8340 (2002)ADSGoogle Scholar
  30. [30]
    I Galanakis, P H Dederichs and N Papanikolaou Phys. Rev. B 66 134428 (2002)CrossRefGoogle Scholar
  31. [31]
    I Galanakis, P H Dederichs, and N Papanikolaou Phys. Rev. B 66 174429(2002)CrossRefGoogle Scholar
  32. [32]
    S Rauf, S Arif, M Haneef and B Amin J. Phys. Chem. Solids 76 153 (2015)ADSCrossRefGoogle Scholar
  33. [33]
    J C Slater Phys. Rev. 49 931 (1936)ADSCrossRefGoogle Scholar
  34. [34]
    L Pauling Phys. Rev. 54 899 (1938)ADSCrossRefGoogle Scholar
  35. [35]
    H C Kandpal, V Kesnofontov, M Wojcik, R Seshadri and C Felser J. Phys. D Appl. Phys. 40 1587 (2007).ADSCrossRefGoogle Scholar
  36. [36]
    B S Chen, Y Z Li, X Y Guan, C Wang, C X Wang and Z Y Gao J. Superconduc. Novel Magn. 28 1559 (2015)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Département de SM, Institue des Sciences et des TechnologiesCentre Universitaire de TissemsiltTissemsiltAlgeria
  2. 2.Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M)Université de MascaraMascaraAlgeria
  3. 3.Department of Physics, Faculty of SciencesDr. Tahar Moulay University of SaidaSaidaAlgeria
  4. 4.School of Physical Science and TechnologySouthwest UniversityChongqingPeople’s Republic of China
  5. 5.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Department of PhysicsPachhunga University CollegeAizawlIndia
  7. 7.Modelling and Simulation in Materials Science Laboratory, Physics DepartmentUniversity of Sidi Bel-AbbesSidi Bel-AbbesAlgeria

Personalised recommendations