Advertisement

Theoretical calculations of elastic, mechanical and thermal properties of REPt3 (RE = Sc, Y and Lu) intermetallic compounds based on DFT

  • V. Thakur
  • G. Pagare
Original Paper
  • 27 Downloads

Abstract

The elastic, mechanical and thermal properties of isostructural and isoelectronic nonmagnetic REPt3 (RE = Sc, Y and Lu) intermetallic compounds, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave method. The calculations are carried out within PBE-GGA, WC-GGA and PBE-sol GGA for the exchange correlation potential. Our calculated ground state properties such as lattice constant (ao), bulk modulus (B) and its pressure derivative (B′) are in good agreement with the available experimental and other theoretical results. We first time predict the elastic constants for these compounds using GGA approximations. All the compounds are found to be ductile in nature in accordance with Pugh’s criteria. The computed electronic band structures show metallic character of these compounds. The charge density plot and density of states of these compounds reveals that the chemical bond between RE and Pt is mainly ionic. The elastic properties including Poisson’s ratio (σ), Young’s modulus (E), shear modulus (GH) and anisotropy factor (A) are also determined using the Voigt–Reuss–Hill averaging scheme. The average sound velocities (vm), density (ρ) and Debye temperature (θD) of these REPt3 compounds are also estimated from the elastic constants. We first time report the variation of elastic constants, elastic moduli, sound velocities and Debye temperatures of these compounds as a function of pressure.

Keywords

Intermetallic compounds Density functional theory Electronic properties Elastic constants Thermal properties 

PACS Nos

71.20.Lp 71.15Mb 71.20.-b 62.20.de 65.40.-b 

Notes

Acknowledgements

The authors are thankful to MPCST for the financial support.

References

  1. [1]
    T Iizuka, T Mizuno, B H Min, Y S Kwon and S Kimura J. Phys. Soc. Jpn. 81 043703 (2012)ADSCrossRefGoogle Scholar
  2. [2]
    P Lethuillier and J Pierre J. Phys. 36 329 (1975)CrossRefGoogle Scholar
  3. [3]
    S J Asadabadi, S Cottenier, H Akbarzadeh, R Saki and M Rots Phys. Rev. B 66 195103 (2002)Google Scholar
  4. [4]
    D Aoki, Y Katayama, S Nojiri, R Settai, Y Inada, K Sugiyama, Y Onuki, H Harima and Z Kletowski Phys. B Condens. Matter 1083 259 (1999)Google Scholar
  5. [5]
    N Arikan, A Iyigor, A Candan, S Ugur, Z Charifi, H Baaziz and G Ugur Comput. Mater. Sci. 79 703 (2013)CrossRefGoogle Scholar
  6. [6]
    L Meddar, S Garbarino, M Danaie, G A Botton and D Guay Thin Solid Films 524 127 (2017)ADSCrossRefGoogle Scholar
  7. [7]
    W W Xing, X Q Chen, D Z Li, Y Y Li, C L Fu, S V Meschel and X Y Ding Intermetallics 28 16 (2012)CrossRefGoogle Scholar
  8. [8]
    M Kumar, T Nautiyal and S Auluck J. Alloys Compd. 486 60 (2009)CrossRefGoogle Scholar
  9. [9]
    N Acharya, B Fatima and S P Sanyal J. Metastable Nanocrystalline Mater 28 12 (2016)Google Scholar
  10. [10]
    B Chen, S Qi, H Song, C Zhang and J Shen Mod. Phys. Lett. B 29(32) 1550201 (2015)ADSCrossRefGoogle Scholar
  11. [11]
    P Giannozzi et.al. J. Phys. Condens. Matter 21 (39) 395502 (2009)Google Scholar
  12. [12]
    M Sundareswari and M Rajagopalan Eur. Phys. J. B 49(1) 67 (2006)ADSCrossRefGoogle Scholar
  13. [13]
    L V Goncharuk, V R Sidorko, V G Khoruzhaya and T Y Velikanova Powder Metall. Met. Ceram. 39(1-2) 55 (2000)CrossRefGoogle Scholar
  14. [14]
    A Maachou, H Aboura, B Amrani, R Khenata, S Bin Omran, D Varshney Comput. Mater. Sci. 50 3123 (2011)CrossRefGoogle Scholar
  15. [15]
    A Bouhemadou and R Khenata J. Appl. Phys. 102 043528–33 (2007)ADSCrossRefGoogle Scholar
  16. [16]
    P Blaha, K Schwarz, G K H Madsen, D J Kuasnicka, and Luitz WIEN2K, An Augmented Plane Wave Wave + Local Orbitals Program for Calculating Crystal Properties (Wien, Austria: K. Schwarz Technical Universitat) (2001). ISBN 3-9501031-1-2Google Scholar
  17. [17]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  18. [18]
    Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)ADSCrossRefGoogle Scholar
  19. [19]
    J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin, X Zhou and K Burke Phys. Rev. Lett. 100 136406 (2008)ADSCrossRefGoogle Scholar
  20. [20]
    H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    F Birch J. Appl. Phys. 9 279 (1938)ADSCrossRefGoogle Scholar
  22. [22]
    Z Sun, S Li, R Ahuja and J M Schneider Solid State Commun. 129 589 (2004)ADSCrossRefGoogle Scholar
  23. [23]
    C Jasiukiewicz and V Karpus Solid State Commun. 128 167 (2003)ADSCrossRefGoogle Scholar
  24. [24]
    P Wachter, M Filzmoser and J Rebizant Phys. B 293 199 (2001)CrossRefGoogle Scholar
  25. [25]
    A landelli and A Palenzona Crystal chemistry of compounds, in Handbook of the Physics and Chemistry of Rare Earths, (ed.) K A Gschneidner and L Eyring, 2nd edn. North-Holland 1–53 (1984)Google Scholar
  26. [26]
    A E Dwight, J W Downy and R A Conner Acta Cryst. 14 75 (1961)CrossRefGoogle Scholar
  27. [27]
    T H Geballe, B T Matthis, V B Compton, E Corenzwit, G W Hull and L D Longinotti Phys. Rev. 137 A119 (1965)ADSGoogle Scholar
  28. [28]
    R E Schaak, M Avdeev et al. J. Solid State Chem. 177 1244 (2004)ADSCrossRefGoogle Scholar
  29. [29]
    M A Khan and C Koenig J. Phys. C9 1067 (1987)Google Scholar
  30. [30]
    V I Razumovski, E I Isaev, A V Ruban and P A Korzhavyi Intermetallics 16 982 (2008)CrossRefGoogle Scholar
  31. [31]
    N F Mott and H Jones The Theory of the Properties of Metals and Alloys (Oxford: Clarenden Press) (1936)Google Scholar
  32. [32]
    C Kittel Introduction to Solid State Physics, 7th edn. (New York: Wiley) p 66. ISBN 9971-51-180-0 (1996).Google Scholar
  33. [33]
    A Bouhemadou, R Khenata, M Kharoubi, T Seddik, A H Reshak and Y A Douri Comput. Mater. Sci. 45 474 (2009)CrossRefGoogle Scholar
  34. [34]
    M Born and K Huang, Dynamical Theory of Crystal Lattices (Oxford, Clarendon) (1956)zbMATHGoogle Scholar
  35. [35]
    J Wang and S Yip Phys. Rev. Lett. 71 4182 (1993)ADSCrossRefGoogle Scholar
  36. [36]
    R Hill Proc. Phys. Soc. Lond. A 65 349 (1952)Google Scholar
  37. [37]
    W Voigt Ann. Phys. 38 573 (1889)CrossRefGoogle Scholar
  38. [38]
    A Reuss and Z Angew J. Math. Phys. 9 49 (1929)Google Scholar
  39. [39]
    P Wachter Handbook on the Physics and Chemistry of Rare Earths (North-Holland Amsterdam) 19 Chapter 132 (1993)Google Scholar
  40. [40]
    S F Pugh Philos. Mag. 45 823 (1954)Google Scholar
  41. [41]
    S Ganeshan, S L Shang, H Zhang, Y Wang, M Mantina and Z K Liu Intermetallics 17 313 (2009)CrossRefGoogle Scholar
  42. [42]
    D G Pettifor J. Mater. Sci. Technol. 8 345 (1992)CrossRefGoogle Scholar
  43. [43]
    C H Jenkins and S K Khanna A Modern Integration of Mechanics and Materials in Structural Design. Mechanics of Materials ISBN: 0-12-383852-5 62-72 (2005)Google Scholar
  44. [44]
    W Feng et al. Physica B 405 4294 (2010)ADSCrossRefGoogle Scholar
  45. [45]
    J B Levine, S H Tolbert and R B Kaner Adv. Funct. Mater. 19 3519 (2009)CrossRefGoogle Scholar
  46. [46]
    J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Res. 11 (2001)Google Scholar
  47. [47]
    I N Frantsevich, F F Voronov and S A Bokuta Elastic Constants and Elastic Moduli of Metals and Insulators (ed.) I N Frantsevich (Naukova Dumka, Kiev) p 60 (1983)Google Scholar
  48. [48]
    L Vitos, P A Korzhavyi and B Johansson Nat. Mater. 2 25 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsSarojini Naidu Government Girls P. G. Autonomous CollegeBhopalIndia

Personalised recommendations