Indian Journal of Physics

, Volume 92, Issue 11, pp 1397–1402 | Cite as

Analysis of barrier inhomogeneities in AuGe/n-Ge Schottky diode

  • A Buyukbas UlusanEmail author
  • A Tataroglu
Original Paper


The barrier inhomogeneities in AuGe/n-Ge Schottky diode have been analyzed by using current–voltage (I–V) measurements over a wide temperature range of 200 to 400 K. The electrical parameters such as ideality factor (n), zero-bias barrier height (ΦBo), and series resistance (Rs) of the diode were found to be strongly temperature dependent. The abnormal increase of the barrier height with temperature was attributed to the existence of barrier height inhomogeneities at the metal/semiconductor interface. Therefore, the conventional and modified Richardson plots were drawn to explain Gaussian distribution (GD) of barrier heights. The modified Richardson plot shows a good linearity over the temperature range. The modified Richardson constant (A*) was found to be 141.49 A cm−2 K−2, which is close to the theoretical value of 140 A cm−2 K−2 for n-Ge. Moreover, the barrier height values obtained from I–V and Norde methods are found to be in good agreement with each other.


Schottky diode Barrier inhomogeneities Series resistance Gaussian distribution Temperature effect 


85.30.Kk 73.40.Qv 73.30.+y 73.20.-r 73.40.-c 


  1. [1]
    S M Sze Physics of Semiconductor Devices, 2nd edn. (New York: Wiley) p 362 (1981)Google Scholar
  2. [2]
    E H Rhoderick R H Williams Metal Semiconductor Contacts, 2nd edn. (Oxford: Clarendon Press) p 257 (1988)Google Scholar
  3. [3]
    S S Li Semiconductor Physical Electronics, 2nd edn. (New York: Springer) p 246 (2006)Google Scholar
  4. [4]
    B L Sharma MetalSemiconductor Schottky Barrier Junctions and Their Applications (New York: Plenum Press) p 1 (1984)CrossRefGoogle Scholar
  5. [5]
    M K Hudait and S B Krupanidhi Solid State Electron. 44 1089 (2000)ADSCrossRefGoogle Scholar
  6. [6]
    S Chand and S Bala Semicond. Sci. Technol. 20 1143 (2005)ADSCrossRefGoogle Scholar
  7. [7]
    Ş Altındal, H Kanbur, A Tataroğlu and M M Bülbül Physica B 399 146 (2007)ADSCrossRefGoogle Scholar
  8. [8]
    F Z Pür and A Tataroğlu Phys. Scr. 86 035802 (2012)ADSCrossRefGoogle Scholar
  9. [9]
    R Sharma J Electron Devices 8 286 (2010)Google Scholar
  10. [10]
    A Umapathi and V R Reddy Microelectron. Eng. 114 31 (2014)CrossRefGoogle Scholar
  11. [11]
    Z Tekeli, Ş Altındal, M Çakmak and S Özçelik J. Appl. Phys. 102 054510 (2007)ADSCrossRefGoogle Scholar
  12. [12]
    E Elgazzar, A Tataroglu, A A Al-Ghamdi, Y Al-Turki, W A Farooq, F El-Tantawy and F Yakuphanoglu Appl. Phys. A 122 617 (2016)ADSCrossRefGoogle Scholar
  13. [13]
    M Sharma and S K Tripathi J. Appl. Phys. 112 024521 (2012)ADSCrossRefGoogle Scholar
  14. [14]
    L Huang, R Geiod and D Wang Jap. J. Appl. Phys. 55 124101 (2016)ADSCrossRefGoogle Scholar
  15. [15]
    R T Tung Phys. Rev. B 64 205310 (2001)ADSCrossRefGoogle Scholar
  16. [16]
    I S Yahia, A A M Farag, F Yakuphanoglu and W A Farooq Synthetic Metals 161 881 (2011)CrossRefGoogle Scholar
  17. [17]
    M Mamor, K Bouziane, A Tirbiyine and H Alhamrashdi Superlat. Microstruct. 72 344 (2014)ADSCrossRefGoogle Scholar
  18. [18]
    S Altındal Yeriskin, M Balbası and S Demirezen Indian J. Phys. 91 421 (2017)ADSCrossRefGoogle Scholar
  19. [19]
    M İlhan J. Mater. Electron. Devices 1 15 (2017)Google Scholar
  20. [20]
    S S Naik and V R Reddy Adv. Mat. Lett. 3(3) 188 (2012)CrossRefGoogle Scholar
  21. [21]
    K Moraki, S Bengi, S Zeyrek, M M Bulbul and S Altındal J. Mater. Sci. Mater. Electron. 28 3987 (2017)CrossRefGoogle Scholar
  22. [22]
    S K Tripathi and M Sharma J. Appl. Phys. 111 074513 (2012)ADSCrossRefGoogle Scholar
  23. [23]
    A A Kumar, L D Rao, V R Reddy and C-Jong Choi Curr. Appl. Phys. 13 975 (2013)ADSCrossRefGoogle Scholar
  24. [24]
    V R Reddy, V Janardhanam, C H Leem and C J Choi Superlattices Microstruct. 67 242 (2014)ADSCrossRefGoogle Scholar
  25. [25]
    J H Evens-Freeman, M M El-Nahass, A A M Farag and A Elhaji Microelectron. Eng. 88 3353 (2011)CrossRefGoogle Scholar
  26. [26]
    H Norde J. Appl. Phys. 50 5052 (1979)ADSCrossRefGoogle Scholar
  27. [27]
    D Donoval, M Barus and M Zdimal Solid-State Electron. 34 1365 (1991)ADSCrossRefGoogle Scholar
  28. [28]
    S Chand and J Kumar J. Appl. Phys. A 63 171 (1996)ADSGoogle Scholar
  29. [29]
    R T Tung Phys. Rev. B 45 13509 (1992)ADSCrossRefGoogle Scholar
  30. [30]
    Y P Song, R L Van Meirhaegh, W H Laflere and F Cardon Solid State Electron. 29 633 (1986)ADSCrossRefGoogle Scholar
  31. [31]
    R T Tung Mater. Sci. Eng. R 35 1 (2001)Google Scholar
  32. [32]
    M K Hudait and S B Krupanidhi Solid State Electron. 44 1089 (2000)ADSCrossRefGoogle Scholar
  33. [33]
    J Chen, J Lv and Q Wang Thin Solid Films 616 145 (2016)ADSCrossRefGoogle Scholar
  34. [34]
    J H Werner and H H Guttler J. Appl. Phys. 69 1522 (1991)ADSCrossRefGoogle Scholar
  35. [35]
    Ç Bilkan, Y Badali, S Fotouhi-Shablou, Y Azizian-Kalandaragh and Ş. Altındal Appl. Phys. A 123 560 (2017)ADSCrossRefGoogle Scholar
  36. [36]
    R Kumar and S Chand Solid State Sci. 58 115 (2016)ADSCrossRefGoogle Scholar
  37. [37]
    Ç Ş Güçlü, A F Özdemir and Ş Altindal Appl. Phys. A 122 1032 (2016)ADSCrossRefGoogle Scholar
  38. [38]
    S Chand and J Kumar Semicond. Sci. Technol. 10 1680 (1995)ADSCrossRefGoogle Scholar
  39. [39]
    J Osvald and Z S Horvath Appl. Surf. Sci. 234 349 (2004)ADSCrossRefGoogle Scholar
  40. [40]
    S Altındal J. Mater. Electron. Devices 1 42 (2017)Google Scholar
  41. [41]
    D S Reddy, M B Reddy, N N K Reddy and V R Reddy J. Modern Phys. 2 113 (2011)ADSCrossRefGoogle Scholar
  42. [42]
    M A Mayimele, J P Janse van Rensburg, F D Auret and M Diale Physica B 480 58 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    E Guo, Z Zeng, Y Zhang, X Long, H Zhou and X Wang Microelectron. Reliab. 62 63 (2016)CrossRefGoogle Scholar
  44. [44]
    A Büyükbaş Uluşan, A Tataroğlu, Y Azizian-Kalandaragh and Ş Altındal J. Mater. Sci. Mater. Electr. 29 159 (2018)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations