Advertisement

Water dissociative adsorption on the precovered Fe (100) surface from DFT computation

  • Bin Yang
  • Kaiyuan Shi
  • Hongying Li
  • Liwu Jiang
  • Chuan-Hui ZhangEmail author
Original Paper
  • 4 Downloads

Abstract

The H2O adsorption and dissociation on two kinds of the precovered Fe surface were studied by density functional theory. On the surface-1, the water molecules prefer to adsorb on the bridge and hollow sites than top sites, but there are no obvious preferred adsorption sites on the surface-2. The impurity energy difference and adsorption energy of the adsorbates are not sensitive to the adsorption orientation and height relative to the surface. Moreover, the Hirshfeld charge and the electronic density of state were analyzed. The rotation and dissociation of H2O molecules occur on the two kinds of precovered surfaces. Some H2O molecules are dissociated into OH and H groups. The energy barriers are from 0.4 to 1.0 eV which are consistent with the experimental data. H2O molecule can be dissociated more easily at the Ha site on boron-precovered surface-1 than those on the phosphorus-precovered surface-1 and boron-precovered surface-2 due to the lower reaction barrier.

Keywords

H2O adsorption Precovered surface Fe (100) Dissociation 

PACS Nos.

68.35.Dv 68.43.Fg 68.47.De 73.43.Cd 82.30.Lp 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the National Key Research and Development Program of China (Grant No. 2017YFA0403404) and the National Natural Science Foundation of China (Grant No. 51501009). The authors also gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 51471022) and Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-17-001A).

References

  1. [1]
    D E Jiang and E A Carter J. Phys. Chem. B 108 19140 (2004)CrossRefGoogle Scholar
  2. [2]
    J M H Lo and T Ziegler J. Phys. Chem. C 111 11012 (2007)CrossRefGoogle Scholar
  3. [3]
    S C Jung and M H Kang Phys. Rev. B 81 115460 (2010)ADSCrossRefGoogle Scholar
  4. [4]
    A Govender, D C Ferre and J W Niemantsverdriet Chem. Phys. Chem. 13 1583 (2012)Google Scholar
  5. [5]
    R R Q Freias, R Rivelino, F de Brito Mota and C M C de Castilho J. Phys. Chem. C 116 20306 (2012)CrossRefGoogle Scholar
  6. [6]
    P Lazar and M Otyepka J. Phys. Chem. C 116 25470 (2012)CrossRefGoogle Scholar
  7. [7]
    V A Glezakou and L X Dang J. Phys. Chem. C 113 3691 (2009)CrossRefGoogle Scholar
  8. [8]
    W Zhao, J D Wang, F B Lu and D R Chen Acta Phys. Sin. 58 3352 (2009)Google Scholar
  9. [9]
    H Ogasawara, B Brena, M Nyberg, A Pelmenschikov, L G M Pettersson and A Nilsson Phys. Rev. Lett. 89 276102 (2002)CrossRefGoogle Scholar
  10. [10]
    J Ren, S J Meng Am. Chem. Soc. 128 9282 (2006)CrossRefGoogle Scholar
  11. [11]
    M Eder, K Terakura and J Hafner Phys. Rev. B 64 115426 (2001)CrossRefGoogle Scholar
  12. [12]
    R R Q Freitas, R Rivelino, F de Brito Mota and C M C de Castilho J. Phys. Chem. A 115 12348 (2011)CrossRefGoogle Scholar
  13. [13]
    S L Liu, X X Tian, T Wang, X D Wen, Y W Li, J G Wang and H J Jiao J. Phys. Chem. C 118 26139 (2014)CrossRefGoogle Scholar
  14. [14]
    G Kresse and D Joubert Phys. Rev. B 59 1758 (1999)ADSCrossRefGoogle Scholar
  15. [15]
    Y Joseph, W Ranke and W Weiss J. Phys. Chem. B 104 3224 (2000)CrossRefGoogle Scholar
  16. [16]
    S L Liu, X X Tian, T Wang, X D Wen, Y W Li, J G Wang and H J Jiao Phys. Chem. Chem. Phys. 17 8811(2015)CrossRefGoogle Scholar
  17. [17]
    W Lisowski and R Dus Fizika A 4 279 (1995)ADSGoogle Scholar
  18. [18]
    P Jiang, M W Zappone, S L Bernasek and A Robertson Jr J. Vac. Sci. Technol. 14 2372 (1996)ADSCrossRefGoogle Scholar
  19. [19]
    W Araabczyk and U Narkiewicz Appl. Surf. Sci. 108 379 (1997)ADSCrossRefGoogle Scholar
  20. [20]
    S L Liu, Y W Li, J G Wang and H J Jiao J. Phys. Chem. C 119 28377 (2015)CrossRefGoogle Scholar
  21. [21]
    S L Liu, X X Tian, T Wang, X D Wen, Y W Li, J G Wang and H J Jiao J. Phys. Chem. C 119 11714 (2015)CrossRefGoogle Scholar
  22. [22]
    S L Liu, Y W Li, J G Wang and H J Jiao Catal. Sci. Technol. 7 427 (2017)Google Scholar
  23. [23]
    P A Thiel and T E Madey Surf. Sci. Rep. 7 211 (1987)ADSCrossRefGoogle Scholar
  24. [24]
    M A Henderson Surf. Sci. 46 1 (2002)CrossRefGoogle Scholar
  25. [25]
    P Hohenberg Phys. Rev. 136 864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    W Kohn and L Sham J. Phys. Rev. 140 1133 (1965)ADSCrossRefGoogle Scholar
  27. [27]
    M D Segall, P J D Lindan, M J Probert, C J Pickard, P J Hasnip, S J Clark and M C Payne J. Phys. Condens. Matter 14 2717 (2002)ADSCrossRefGoogle Scholar
  28. [28]
    P E Blöchl Phys. Rev. B 50 17953 (1994)ADSCrossRefGoogle Scholar
  29. [29]
    J P Perdew, K Burke, M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  30. [30]
    P Błoński, A Kiejna and J Hafner Phys. Rev. B 77 155424 (2008)CrossRefGoogle Scholar
  31. [31]
    S Meng, E G Wang and S W Gao Phys. Rev. B 69 195404 (2004)CrossRefGoogle Scholar
  32. [32]
    J P Perdew and Y Wang Phys. Rev. B 45 13244 (1992)ADSCrossRefGoogle Scholar
  33. [33]
    S Tsuzuki and H P Lüthi J. Chem. Phys. 114 3949 (2001)ADSCrossRefGoogle Scholar
  34. [34]
    T H Fischer and J Almlof J. Phys. Chem. 96 9768 (1992)CrossRefGoogle Scholar
  35. [35]
    H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    X Assfelda and J L Rivail Chem. Phys. Lett. 263 100 (1996)ADSCrossRefGoogle Scholar
  37. [37]
    G Henkelman, B P Uberuaga and H J Jónsson Chem. Phys. 113 9901 (2000)Google Scholar
  38. [38]
    C Kittel Am. J. Phys. 21 547 (2005)MathSciNetGoogle Scholar
  39. [39]
    R Kohlhaas, P Donner and N Schmitz-Pranghe Z. Angew. Phys. 23 245 (1967)Google Scholar
  40. [40]
    C Kittel and P McEuen Introduction to Solid State Physics (New York: Wiley) Vol 8, p 323 (1996)Google Scholar
  41. [41]
    P Błoński and A Kiejna Vacuum 74 179 (2004)ADSCrossRefGoogle Scholar
  42. [42]
    F Karlicky, P Lazar, M Dubecký and M Otyepka J. Chem. Theory. Comput. 9 3670 (2013)CrossRefGoogle Scholar
  43. [43]
    D Curulla-Ferré, A Govender, T C Bromfield and J W Niemantsverdriet J. Phys. Chem. B 110 13897 (2006)CrossRefGoogle Scholar
  44. [44]
    D W Moon, S L Bernasek, J PLu, J L Gland and D J Dwyer Surf. Sci. 184 90 (1987)ADSCrossRefGoogle Scholar
  45. [45]
    S Westerberg, C Wang, K Chou and G A Somorjai J. Phys. Chem. B 108 6374 (2004)CrossRefGoogle Scholar
  46. [46]
    K Otte, W W Schmahl and R Pentcheva Surf. Sci. 606 1623 (2012)ADSCrossRefGoogle Scholar
  47. [47]
    E van Steen, P van Helden J. Phys. Chem. C 114 5932 (2010)CrossRefGoogle Scholar
  48. [48]
    C F Huo, J Ren, Y W Li, J G Wang and H J Jiao J. Catal. 249 174 (2007)CrossRefGoogle Scholar
  49. [49]
    S C Jung and M H Kang Phys. Rev. B 81 115460 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.National Center for Materials Service SafetyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Oil & Gas Technology Research InstituteChangqing Oilfield CompanyXi’anChina

Personalised recommendations