Advertisement

TFET performance optimization using gate work function engineering

  • Mohammad Bagher Tajally
  • Mohammad Azim KaramiEmail author
Original Paper
  • 13 Downloads

Abstract

This work presents main electrical characteristics improvement in a nanoscale tunnel field-effect transistor (TFET) with 50 nm channel length, applying work function engineering techniques. Three different metal gate materials with dedicated work functions are utilized to optimize the TFET performance. By gate work function and length optimization, the main parameters of Ion = 5×10−5 A/µm, Ioff = 2.5 × 10−15 A/µm, Iamb = 3×10−7 A/µm, and subthreshold swing = 51.01 mV/decade are obtained in accordance with tunneling barrier shape at source/channel and drain/channel tunnel junctions. The work function engineering techniques, presented in the current work, results in 1.22 times improvement in ION and 0.99 times improvement in IOFF.

Keywords

TFET Work function engineering Planar triple metal gate 

PACS Nos.

67.72.uj 61.82.Fk 71.55.Eq 85.30.De 

References

  1. [1]
    AM Ionescu and H Riel Nature 479 329 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    Wu et al. IEEE Trans. Electron Devices 63 5072 (2016)ADSCrossRefGoogle Scholar
  3. [3]
    H Kam, T-J King-Liu, E Alon and M Horowitz Electron Devices Meeting. IEDM. IEEE International p 1 (2008)Google Scholar
  4. [4]
    Chang et al. Proceedings of the IEEE 98 215 (2010)Google Scholar
  5. [5]
    SM Turkane and AK Kureshi Int. J. Appl. Eng. Res. 11 4922 (2016)Google Scholar
  6. [6]
    BR Raad, S Tirkey, D Sharma and P Kondekar IEEE Trans. Electron Devices 64 1830 (2017)ADSCrossRefGoogle Scholar
  7. [7]
    J Madan and R Chaujar IEEE Trans Device Mater Reliab 16 227 (2016)CrossRefGoogle Scholar
  8. [8]
    Chen et al. IEEE Trans. Electron Devices 64 1343 (2017)ADSCrossRefGoogle Scholar
  9. [9]
    MB Tajally and MA Karami. Superlattices Microstruct. 110 139 (2017)ADSCrossRefGoogle Scholar
  10. [10]
    Lu et al. IEEE Electron Device Lett. 26 445 (2005)ADSCrossRefGoogle Scholar
  11. [11]
    R Lin, Q Lu, P Ranade, T-J King and C Hu IEEE Electron Device Lett. 23 49 (2002)ADSCrossRefGoogle Scholar
  12. [12]
    B-Y Tsui and C-F Huang IEEE Electron Device Lett. 24 153 (2003)ADSCrossRefGoogle Scholar
  13. [13]
    E Ko, H Lee, J-D Park and C Shin IEEE Trans. Electron Devices 63 5030 (2016)ADSCrossRefGoogle Scholar
  14. [14]
    WY Choi and W Lee IEEE Trans. Electron Devices 57 2317 (2010)ADSCrossRefGoogle Scholar
  15. [15]
    ATLAS Device Simulation Software, Silvaco Int. (Santa Clara, CA, USA) (2016)Google Scholar
  16. [16]
    SL Noor, S Safa and MZR Khan. Int. J. Numer. Model. Electron. Netw. Devices Fields 30 (2017)Google Scholar
  17. [17]
    K Boucart and AM Ionescu IEEE Trans. Electron Devices 54 1725 (2007)ADSCrossRefGoogle Scholar
  18. [18]
    AN Hana and MM Hussain J. Appl. Phys. 117 14310 (2015)CrossRefGoogle Scholar
  19. [19]
    DB Abdi and MJ Kumar IEEE J. Electron Devices Soc. 2 187 (2014)CrossRefGoogle Scholar
  20. [20]
    S Shubham and MJ Kumar IEEE Trans. Electron Devices 62 3882 (2015)ADSCrossRefGoogle Scholar
  21. [21]
    R Narang, M Saxena, RS Gupta and M Gupta JSTS J. Semicond. Technol. Sci. 12 482 (2012)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Mohammad Bagher Tajally
    • 1
  • Mohammad Azim Karami
    • 1
    Email author
  1. 1.School of Electrical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations