Advertisement

Relaxation mechanism, conductivity and magnetoelectric properties of (Nd1/2Li1/2)(Fe2/3Mo1/3)O3 multiferroics

  • Susmita Nath
  • Subrat Kumar BarikEmail author
  • R. N. P. Choudhary
Original Paper
  • 8 Downloads

Abstract

Relaxation mechanism, conductivity and magnetoelectric properties of (Nd1/2Li1/2)(Fe2/3Mo1/3)O3 multiferroic have been investigated systematically. This material was synthesized by a solid-state reaction route. Thermogravimetric analysis is enforced to perceive the percentage of weight change with rise in temperature in order to obtain the calcination temperature of the material. The preliminary structural study using X-ray diffraction data reveals the orthorhombic structure of the material. The complex plot of impedance data helped to distinguish the involvement of grain as well as grain boundary effects towards the overall electrical properties of the compound. Temperature-dependent electrical conductivity plots exhibit the presence of thermally activated conduction mechanism of the compound. The magnetic field dependence of magnetization (M–H loop) showed the presence of ferromagnetic nature of the material. The value of magnetoelectric coupling coefficient of prepared material is found to be 2.7 mV Cm−1 Oe−1.

Keywords

Thermogravimetric analysis X-ray diffraction Electrical conductivity Ferromagnetic material 

PACS Nos.

81.70.Pg 61.05.cp 73.61.Jc 75.50.Dd 

Notes

Acknowledgements

Authors are grateful to AICTE for approving the Project (No.: 8023/RID/RPS-32/(POLICY-III)(NER)/2011-12) for investigational study.

References

  1. [1]
    W Eerenstein, N D Mathur and J F Scott Nature 442 759 (2006)ADSCrossRefGoogle Scholar
  2. [2]
    N A Spaldin, S W Cheong and R Ramesh Phys. Today 63 38 (2010)CrossRefGoogle Scholar
  3. [3]
    J C Wojdeł and J Íñiguez Phys. Rev. Lett. 103 267205 (2009)ADSCrossRefGoogle Scholar
  4. [4]
    V B Naik and R Mahendiran Solid State Commun. 149 754 (2009)ADSCrossRefGoogle Scholar
  5. [5]
    S K Pradhan and B K Roul J. Phys. Chem. Solids 72 1180 (2011)ADSCrossRefGoogle Scholar
  6. [6]
    S Nath, S K Barik, R N P Choudhary and S K Barik Phys. Lett. A 381 2174 (2017)ADSCrossRefGoogle Scholar
  7. [7]
    S Acharya, A K Deb, D Das and P K Chakrabarti Mater. Lett. 65 1280 (2011)CrossRefGoogle Scholar
  8. [8]
    K Mukhopadhyay, A S Mahapatra and P K Chakrabarti Mater. Lett. 159 9 (2015)CrossRefGoogle Scholar
  9. [9]
    B Park, An Interactive Powder Diffraction Data Interpretations and Indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042.Google Scholar
  10. [10]
    N Kumar, A Ghose and R N P Choudhary Mater. Chem. Phys. 130 381 (2011)CrossRefGoogle Scholar
  11. [11]
    J C Anderson Dielectrics (London: Chapman and Hall) (1964)Google Scholar
  12. [12]
    A Shukla and R N P Choudhary Mater. Res. Bull. 48 4078 (2013)CrossRefGoogle Scholar
  13. [13]
    S Nath, S K Barik, R N P Choudhary AIP Conference Proceedings 1728 020400 (2016)Google Scholar
  14. [14]
    S Verma, J Chand and M Singh J. Alloys Compd. 587 763 (2014)CrossRefGoogle Scholar
  15. [15]
    X J Xi, S Y Wang, W F Liu, H J Wang, F Guo, X Wang, J Guo and D J Li J. Alloys Compd. 603 224 (2014)CrossRefGoogle Scholar
  16. [16]
    S Nath, S K Barik, R N P Choudhary J. Mater. Sci. Mater. Electron 27 8717 (2016)CrossRefGoogle Scholar
  17. [17]
    P S Das, P K Chakraborty, B Behera and R N P Choudhary Physica B 395 98 (2007)ADSCrossRefGoogle Scholar
  18. [18]
    S Nath, S K Barik, S Hajra, R N P Choudhary J Mater. Sci. Mater. Electron. 29 12251 (2018)CrossRefGoogle Scholar
  19. [19]
    J R Macdonald Soli. Stat. Ion. 13 147 (1984)ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y K Yadav, M P K Sahoo and R N P Choudhary J. Alloys Compd. 490 589 (2010)CrossRefGoogle Scholar
  21. [21]
    B Pati, R N P Choudhary and P R Das J. Alloys Compd. 579 218 (2013)CrossRefGoogle Scholar
  22. [22]
    N Kumar, A Shukla and R N P Choudhary J. Mater. Sci. Mater. Electron. 28 6673 (2017)CrossRefGoogle Scholar
  23. [23]
    A K Jonscher Nature 267 673 (1977)ADSCrossRefGoogle Scholar
  24. [24]
    S Kazhugasalamoorthy, P Jegatheesan, R Mohandoss, N V Giridharan, B Karthikeyan, R J Joseyphus and S Dhanuskodi J. Alloys Compd. 493 569 (2010)CrossRefGoogle Scholar
  25. [25]
    K S Nalwa, AGarg, A Upadhaya Mater. Lett. 62 878 (2008)CrossRefGoogle Scholar
  26. [26]
    S Nath, S K Barik and R N P Choudhary J. Mater. Sci. Mater. Electron. 26 8199 (2015)CrossRefGoogle Scholar
  27. [27]
    X Peng, H Kang, L Liu, C Hu, L Fang, J Chen and X Xing Soli. Stat. Sci. 15 91 (2013)ADSCrossRefGoogle Scholar
  28. [28]
    S Nath, S K Barik, S Hajra, and R N P Choudhary Phys. B: Cond. Matter. (2018).  https://doi.org/10.1016/j.physb.2018.10.042 Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Multifunctional Materials Laboratory, Department of PhysicsNational Institute of TechnologySilcharIndia
  2. 2.Advanced Material Research Laboratory, Department of PhysicsSOA UniversityBhubaneswarIndia

Personalised recommendations