Advertisement

Locally rotationally symmetric Bianchi type-II cosmological model in f(RT) gravity

  • Nisha GodaniEmail author
Original Paper
  • 23 Downloads

Abstract

The present work is focused on the study of locally rotationally symmetric Bianchi type-II model with perfect fluid in f(RT) gravity. Three types of f(RT) gravity models are proposed (Harko et al. in Phys Rev D 84:024020, 2011). According to the first model, the function \(f(R,T)=R+2f(T)\), where R is Ricci scalar and f(T) is an arbitrary function of trace of stress energy tensor T. In this paper, the function \(f(T) = \alpha T + \beta T^2\) is considered, where \(\alpha\) and \(\beta\) are real numbers. The physical parameters are determined with respect to cosmic time as well as red shift by using the equation of state \(p=\epsilon \rho\) and the scale factor \(a(t) = (\sinh (\phi t))^{\frac{1}{k}}\), where \(k>0\) & \(\phi \ne 0\). The energy density is compared for dust and radiation-dominated models. The present values of deceleration parameter, Hubble parameter and age of the universe are determined and compared with the results of \(\Lambda\)CDM model. Further, the theoretical and experimental values of luminosity distance and apparent magnitude are compared.

Keywords

\(f(R, T)\) gravity Anisotropic space–time Age of the universe Cosmic acceleration 

PACS Nos.

98.80.k 98.80.Es 

Notes

Acknowledgements

The author is thankful to Prof. G. K. Goswami, Kalyan P. G. College, Bhilai, India, for motivating to carry out this work.

References

  1. [1]
    A G Riess et al. Astron. J. 116 1009 (1998)ADSGoogle Scholar
  2. [2]
    S Perlmutter et al. Astrophys. J. 517 565 (1999)ADSGoogle Scholar
  3. [3]
    C L Bennet et al. Astrophys. J. Suppl. Ser. 148 1 (2003)ADSGoogle Scholar
  4. [4]
    A G Riess et al. Astrophys. J. 607 665 (2004)ADSGoogle Scholar
  5. [5]
    S Nojiri and S D Odintsov Int. J. Geom. Methods Mod. Phys. 4 115 (2007)MathSciNetGoogle Scholar
  6. [6]
    S Capozziello Int. J. Mod. Phys. D 11 483 (2002)ADSMathSciNetGoogle Scholar
  7. [7]
    S M Caroll, V Duvvuri, M Trpden and M S Turnev Phys. Rev. D 70 043528 (2004)ADSGoogle Scholar
  8. [8]
    S Nojiri and S D Odintsov Phys. Rev. D 68 123512 (2003)ADSGoogle Scholar
  9. [9]
    S Nojiri and S D Odintsov Phys. Lett. A 19 627 (2004)Google Scholar
  10. [10]
    E J Copeland, M Sami and S Tsujikawa Int. J. Mod. Phys. D 15 1753 (2006)ADSGoogle Scholar
  11. [11]
    T V I Multamaki Phys. Rev. D 74 064022 (2006)ADSMathSciNetGoogle Scholar
  12. [12]
    T V I Multamaki Phys. Rev. D 76 064021 (2007)ADSGoogle Scholar
  13. [13]
    M F Shamir Astrophys. Space Sci. 330 183 (2010)ADSGoogle Scholar
  14. [14]
    T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)ADSGoogle Scholar
  15. [15]
    K S Adhav Astrophys. Space Sci. 339 365 (2012)ADSGoogle Scholar
  16. [16]
    D R K Reddy, S Rajamahanthi and R L Naidu Astrophys. Space Sci. 342 249 (2012)ADSGoogle Scholar
  17. [17]
    G C Samanta and S N Dhal Int. J. Theor. Phys. 52 1334 (2013)Google Scholar
  18. [18]
    G C Samanta Int. J. Theor. Phys. 52 2647 (2013)Google Scholar
  19. [19]
    G C Samanta Int. J. Theor. Phys. 52 2303 (2013)Google Scholar
  20. [20]
    D R K Reddy and S Rajamahanthi Glob. J. Sci. Front. Res. 13 23 (2013)Google Scholar
  21. [21]
    D R K Reddy and S Rajamahanthi Astrophys. Space Sci. 344 253 (2013)ADSGoogle Scholar
  22. [22]
    B Mishra and P K Sahoo Astrophys. Space Sci. 352 331 (2014)ADSGoogle Scholar
  23. [23]
    B Mishra, P K Sahoo and S Tarai Astrophys. Space Sci. 359 15 (2015)ADSGoogle Scholar
  24. [24]
    G Ramesh and S Umadevi Astrophys. Space Sci. 361 2 (2016)ADSGoogle Scholar
  25. [25]
    P H R S Moraes, G Ribeiro and R A C Correa Astrophys. Space Sci. 361 227 (2016)ADSGoogle Scholar
  26. [26]
    G P Singh Chin. J. Phys. 54 244 (2016)Google Scholar
  27. [27]
    Z Yousaf, K Bamba and M Z Bhatti Phys. Rev. D 93 064059 (2016)ADSGoogle Scholar
  28. [28]
    Z Yousaf and M Z Bhatti Eur. Phys. J. C 76 1 (2016)Google Scholar
  29. [29]
    M Z Bhatti and Z Yousaf Ann. Phys. 387 253 (2017)ADSGoogle Scholar
  30. [30]
    Z Yousaf, M Z Bhatti and M Ilyas Eur. Phys. J. C 78 1 (2018)Google Scholar
  31. [31]
    D C Maurya, R Zia and A Pradhan Int. J. Geom. Methods Mod. Phys. 14 5 (2017)Google Scholar
  32. [32]
    C Aktaş and S Aygün Chin. J. Phys. 55 71 (2017)Google Scholar
  33. [33]
    P K Sahoo, P Sahoo and B K Bishi Int. J. Geom. Methods Mod. Phys. 14 6 (2017)Google Scholar
  34. [34]
    P K Sahoo Acta Phys. Pol. B Proc. Suppl. 10 369 (2017)ADSGoogle Scholar
  35. [35]
    B K Bishi, S K J Pacif, P K Sahoo and G P Singh Int. J. Geom. Methods Mod. Phys. 16 1750158-1 (2017)Google Scholar
  36. [36]
    A Das, S Ghosh, B K Guha, S Das, F Rahaman and S Ray Phys. Rev. D 95 124011-1 (2017)ADSMathSciNetGoogle Scholar
  37. [37]
    G C Samanta and R Myrzakulov, Chin. J. Phys. 55 1044 (2017)Google Scholar
  38. [38]
    G C Samanta, R Myrzakulov and P Shah Zeitschrift fr Naturforschung A 74 365 (2017)ADSGoogle Scholar
  39. [39]
    J Wu, G Li, T Harko and S Liang Eur. Phys. J. C 78 1 (2018)Google Scholar
  40. [40]
    E Barrientos, F S N Lobo, S Mendoza, G J Olmo and D Rubiera-Garcia Phys. Rev. D 97 104041-1 (2018)ADSGoogle Scholar
  41. [41]
    S Hansraj and A Banerjee Phys. Rev. D 97 104020-1 (2018)ADSGoogle Scholar
  42. [42]
    J K Singh, K Bamba, R Nagpal and S K J Pacif Phys. Rev. D 97 123536 (2018)ADSGoogle Scholar
  43. [43]
    K Bamba, M Ilyas, M Z Bhatti and Z Yousaf, Gen. Relativ. Gravit. 49 112 (2017)ADSGoogle Scholar
  44. [44]
    C B Collins, E N Glass and D A Wilkinson Gen. Relativ. Gravit. 12 805 (1980)ADSGoogle Scholar
  45. [45]
    R K Mishra, A Pradhan and C Chawla Int. J. Theor. Phys. 52 2546 (2013)Google Scholar
  46. [46]
    J V Cunha and J A S Lima Mon. Not. R. Astron. Soc. 390 210 (2008)ADSGoogle Scholar
  47. [47]
    D Rapetti, S W Allen, M A Amin and R D Blandford Mon. Not. R. Astron. Soc. 375 1510 (2007)ADSGoogle Scholar
  48. [48]
    G Hinshaw et al. Astrophys. J. Suppl. Ser. 208 1 (2013)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia

Personalised recommendations