Advertisement

Modulation stability analysis and solitary wave solutions of nonlinear higher-order Schrödinger dynamical equation with second-order spatiotemporal dispersion

  • Aly R. SeadawyEmail author
  • Muhammad ArshadEmail author
  • Dianchen LuEmail author
Original Paper
  • 20 Downloads

Abstract

In optical fibers, the higher-order nonlinear Schrödinger (NLS) dynamical equation which describes the beyond the classic slowly varying envelopes and spatiotemporal dispersion of pulses is investigated. By applying the proposed modified extended mapping method, the optical soliton solutions of higher-order NLS dynamical equation with the coefficients of group velocity dispersion, second-order spatiotemporal dispersion and cubic nonlinearity are deduced. The obtained solutions have important applications in applied sciences and engineering. The formation conditions are specified on parameters in which optical solitons can exist for this media. The moments of some constructed solutions are presented graphically which facilitate the researchers to comprehend the physical phenomena of this equation. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are stable and exact. Other such forms of the system arising in sciences and engineering can also be solved by this steadfast, influential and effective method.

Keywords

Modified extended mapping method Higher-order nonlinear Schrödinger equation Solitons Solitary wave solutions 

PACS Nos.

02.30.Jr 05.45.Yv 47.10.A? 47.35.+i 47.35.Fg 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. [1]
    G L Lamb Elements of Soliton Theory (New York: Wiley) (1980)Google Scholar
  2. [2]
    R K Dodd, J C Eilbeck, J D Gibbon and H C Morris Solitons and Nonlinear Wave Equations (London: Academic) (1982)Google Scholar
  3. [3]
    P Chamorro-Posada and G S McDonald J. Mod. Opt. 45 1111 (1998)ADSCrossRefGoogle Scholar
  4. [4]
    M Arshad, A R Seadawy and D Lu Opt. Quant. Electron. 49 421 (2017)Google Scholar
  5. [5]
    M Arshad, A R Seadawy and D Lu J. Electromagn. Waves Appl. 31 1353 (2017)CrossRefGoogle Scholar
  6. [6]
    M Arshad, A R Seadawy and D Lu Optik 128 40 (2017)ADSCrossRefGoogle Scholar
  7. [7]
    H kumar and F Chand J. Nonlinear Opt. Phys. Mater. 22 135 (2013)CrossRefGoogle Scholar
  8. [8]
    G P Agrawal Nonlinear Fiber Optics, 5th edn (New York: Springer) (2013)Google Scholar
  9. [9]
    K Porsezian and R Ganapathy Opt. Spectrosc. 7, 133 (2015)Google Scholar
  10. [10]
    A Hasegawa and F Tappert Appl. Phys. Lett. 23 142 (1973)ADSCrossRefGoogle Scholar
  11. [11]
    G P Agrawal J. Opt. Soc. Am. B 28 A1 (2011)ADSCrossRefGoogle Scholar
  12. [12]
    A R Seadawy Eur. Phys. J. Plus 130 182 (2015)CrossRefGoogle Scholar
  13. [13]
    M Arshad, A R Seadawy and D Lu Eur. Phys. J. Plus 132 371 (2017)CrossRefGoogle Scholar
  14. [14]
    D Lu, A Seadawy and M Arshad Optik 140 136 (2017)ADSCrossRefGoogle Scholar
  15. [15]
    J Zhai and B Zheng J. Math. Anal. Appl. 445 81 (2017)MathSciNetCrossRefGoogle Scholar
  16. [16]
    A Ali, A R Seadawya and D Lu Optik 145 79 (2017)ADSCrossRefGoogle Scholar
  17. [17]
    D Sinha and P K Ghosh Phys. Lett. A 381 124 (2017)ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S F Tian J. Differ. Equ. 262 506 (2017)ADSCrossRefGoogle Scholar
  19. [19]
    A M S Kumar, J P Prasanth and V M Bannur Physica A 432 71 (2015)ADSCrossRefGoogle Scholar
  20. [20]
    R Ali, A Saha and P Chatterjee Indian J. Phys. 91 689 (2017)ADSCrossRefGoogle Scholar
  21. [21]
    M Eslami, B Fathi Vajargah, M Mirzazadeh and A Biswas Indian J. Phys. 88 177 (2014)ADSCrossRefGoogle Scholar
  22. [22]
    H M Baskonus, T A Sulaimanm and H M Baskonus Indian J. Phys. 135 327 (2017)Google Scholar
  23. [23]
    R A Shahein and A R Seadawy Indian J. Phys. (2018).  https://doi.org/10.1007/s12648-018-1357-3 Google Scholar
  24. [24]
    I Aslan Acta Phys. Pol. A 123 16 (2013)Google Scholar
  25. [25]
    I Aslan Phys. Lett. A 375 4214 (2011)ADSCrossRefGoogle Scholar
  26. [26]
    I Aslan Can. J. Phys. 89 857 (2011)ADSCrossRefGoogle Scholar
  27. [27]
    I Aslan J. Phys. A: Math. Theor. 43 395207 (2010)CrossRefGoogle Scholar
  28. [28]
    I Aslan Pramana J. Phys. 76 533 (2011)ADSCrossRefGoogle Scholar
  29. [29]
    A R Seadawy J. Electromagn. Waves Appl. 31 1353 (2017)MathSciNetCrossRefGoogle Scholar
  30. [30]
    A R Seadawy Comput. Math. Appl. 62 3741 (2011)MathSciNetCrossRefGoogle Scholar
  31. [31]
    A R Seadawy Pramana J. Phys. 89 49 (2017)ADSCrossRefGoogle Scholar
  32. [32]
    A R Seadawy Eur. Phys. J. Plus 130 182 (2015)CrossRefGoogle Scholar
  33. [33]
    A R Seadawy Appl. Math. Lett. 25 687 (2012)MathSciNetCrossRefGoogle Scholar
  34. [34]
    A R Seadawy Optik Int. J. Light Electron Opt. 139 31 (2017)CrossRefGoogle Scholar
  35. [35]
    A H Khater, D K Callebaut and A R Seadawy Phys. Scr. 67 340 (2003)ADSCrossRefGoogle Scholar
  36. [36]
    A R Seadawy Eur. Phys. J. Plus 132 29 (2017)CrossRefGoogle Scholar
  37. [37]
    A H Khater, D K Callebaut, W Malfliet and A R Seadawy Phys. Scr. 64 533 (2001)ADSCrossRefGoogle Scholar
  38. [38]
    K Khan, M A Akbar, M M Rashidi and I Zamanpour Waves Random Complex Media 25 644 (2015)ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J M Christian, G S McDonald, T F Hodgkinson and P Chamorro-Posada Phys. Rev. A 86 023838 (2012)ADSCrossRefGoogle Scholar
  40. [40]
    F Biancalana and C Creatore Opt. Express 16 14882 (2008)ADSCrossRefGoogle Scholar
  41. [41]
    E Tala-Tebue, A R Seadawy, P H Kamdoum-Tamo and D Lu Eur. Phys. J. Plus 133 289 (2018)CrossRefGoogle Scholar
  42. [42]
    M Saha and A K Sarma Commun. Nonlinear Sci. Numer. Simul. 18 2420 (2013)ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M Arshad, A R Seadawy and D Lu Superlattices Microstruct. 113 419 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceTaibah UniversityMedinaSaudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt
  3. 3.Faculty of ScienceJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations