Advertisement

Network structure and dynamics heterogeneities in Al2O3 system: insight from visualization and analysis of molecular dynamics data

  • N. T. T. HaEmail author
  • N. V. Hong
  • P. K. Hung
Original Paper
  • 8 Downloads

Abstract

In this paper, structural properties, dynamical heterogeneity (DH) and diffusion mechanism in liquid alumina were investigated by molecular dynamic simulation. Structural characteristics were clarified through the pair radial distribution function, the distribution of AlOx coordination units and network structure. Furthermore, the diffusion mechanism was due to the transition of the structural units: AlOx → AlOx±1 and OAlx → OAlx±1. In particular, we have analysed the link-cluster function Flk(r, t) to clarify DH phenomena. The Flk(r, t) for sets of random, immobile and mobile atoms was quite different; the liquid Al2O3 exhibited DH at low temperature. We found the existence of separate fast and slow regions where the mobility of atom was extremely low or high, which was the main characteristic of DH.

Keywords

Molecular dynamic Dynamics heterogeneity Diffusion mechanism Network structure 

PACS Nos.

61.43.Fs 61.20.Lc 64.70.Pf 

Notes

Acknowledgements

The authors are grateful for support by Hanoi University of Science and Technology (Grant T2017-LN-06).

References

  1. [1]
    Y Zhao, X Bian and X Hou Physica A 367 42 (2006)Google Scholar
  2. [2]
    S Franz, G Parisi, F R Tersenghi and T Rizzo Eur. Phys. J. E 34 102 (2011)Google Scholar
  3. [3]
    M Vogel and S C Glotzer Phys. Rev. Lett 92 255901 (2004)ADSCrossRefGoogle Scholar
  4. [4]
    H Mizuno and R Yamamoto Phys. Rev. E 82 030501(R) (2010),  https://doi.org/10.1103/PhysRevE.82.030501 ADSCrossRefGoogle Scholar
  5. [5]
    S C Glotzer J. Non-cryst. Solids 274 342 (2000)Google Scholar
  6. [6]
    S Golde, T Palberg and H J Schöpe Nat. Phys. 12 712 (2016)CrossRefGoogle Scholar
  7. [7]
    J P Garrahan and D Chandler Phys. Rev. Lett 89 035704 (2002)ADSCrossRefGoogle Scholar
  8. [8]
    P K Hung and N V Hong Eur. Phys. J. B 71 105 (2009)ADSCrossRefGoogle Scholar
  9. [9]
    J Horbach and W Kob Phys. Rev. B 60 3169 (1999)ADSCrossRefGoogle Scholar
  10. [10]
    M D Ediger Annu. Rev. Phys. Chem. 51 99 (2000)Google Scholar
  11. [11]
    E R Weeks et al Science 287 627(2000)Google Scholar
  12. [12]
    B V R Tata, P S Mohanty and M C Valsakumar Phys. Rev. Lett. 88 018302 (2002)ADSCrossRefGoogle Scholar
  13. [13]
    A M Puertas, M Fuchs and M E Cates J. Phys. Chem. B 109 6666 (2005)CrossRefGoogle Scholar
  14. [14]
    A W Cooper, P Harrowell and H Fynewever Phys. Rev. Lett. 93 135701 (2004)ADSCrossRefGoogle Scholar
  15. [15]
    K D Vargheese, A Tandia and J C Mauro J. Chem. Phys. 132 194501 (2010)ADSCrossRefGoogle Scholar
  16. [16]
    H Sillescu J. Non-cryst. Solids 243 81 (1999)Google Scholar
  17. [17]
    Y Gebremichael, M Vogel and S C Glotzer J. Chem. Phys. 120 4415 (2004)ADSCrossRefGoogle Scholar
  18. [18]
    N Giovambattista, S V Buldyrev, F W Starr and H E Stanley Phys. Rev. Lett. 90 085506 (2003)ADSCrossRefGoogle Scholar
  19. [19]
    B Doliwa and A Heuer Phys. Rev. Lett. 80 4915 (1998)Google Scholar
  20. [20]
    W Kob, C Donati, S J Plimpton, P H Poole and S C Glotzer Phys. Rev. Lett. 79 2827 (1997)ADSCrossRefGoogle Scholar
  21. [21]
    S C Glotzer and C Donati J. Phys. Condens. Matter 11 A285 (1999)ADSGoogle Scholar
  22. [22]
    C Donati, S C Glotzer and P H Poole Phys. Rev. Lett. 82 6064 (1999)CrossRefGoogle Scholar
  23. [23]
    A Heuer and K Okun J. Chem. Phys. 106 6176 (1997)ADSCrossRefGoogle Scholar
  24. [24]
    C Bennemann, C Donati, J Baschnagel and S C Glotzer Nature 399 246 (1999)Google Scholar
  25. [25]
    V V Hoang, S K Oh Int. J. Mod. Phys. B 20 947 (2006)ADSCrossRefGoogle Scholar
  26. [26]
    M Dzugutov, S I Simdyankin and F H M Zetterling Phys. Rev. Lett. 89 195701 (2002)ADSCrossRefGoogle Scholar
  27. [27]
    Y Gebremichael, T B Schrøder, F W Starr and S C Glotzer Phys. Rev. E 64 051503 (2001)Google Scholar
  28. [28]
    G Adam and J H Gibbs J. Chem. Phys. 43 139 (1965)ADSCrossRefGoogle Scholar
  29. [29]
    S P Das Rev. Mod. Phys. 76 786 (2004)Google Scholar
  30. [30]
    V V Hoang Phys. Rev. B 75 174202 (2007)Google Scholar
  31. [31]
    S Ansell et al Phys. Rev. Lett. 78 464 (1997)ADSCrossRefGoogle Scholar
  32. [32]
    G Gutiérrez, B Johansson Phys. Rev. B 65 104202 (2002)CrossRefGoogle Scholar
  33. [33]
    N V Hong, M T Lan, N T Nhan and P K Hung Appl. Phys. Lett. 102 191908 (2013)Google Scholar
  34. [34]
    P Vashishta, R K Kalia, A Nakano and J P Rino J. Appl. Phys. 103 083504 (2008)ADSCrossRefGoogle Scholar
  35. [35]
    P K Hung and L T Vinh J. Non-cryst. Solid 352 5531 (2006)Google Scholar
  36. [36]
    L B Skinner et al Phy. Rev. B 87 024201 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Hanoi University of Science and TechnologyHanoiViet Nam

Personalised recommendations