Advertisement

MAPAN

, Volume 34, Issue 3, pp 371–377 | Cite as

Evaluation of Uncertainty in the Effective Area and Distortion Coefficients of Air Piston Gauge Using Monte Carlo Method

  • Vikas N. Thakur
  • Sanjay Yadav
  • Ashok KumarEmail author
Original Paper

Abstract

The fixed number of trials in the Monte Carlo method (FMCM) has been employed for the evaluation of effective area along with their associated uncertainties and distortion coefficients of piston–cylinder (pc) assembly of the air piston gauge with varying pressures ranging from 6.5 to 360 kPa. The FMCM uncertainty values are compared with the conventional method, i.e., the law of propagation of uncertainty in the experimental range 20–120 kPa using our primary pressure standard, i.e., ultrasonic interferometer manometer. It is observed that the relative uncertainty of the effective area using FMCM (~ 9.5 ppm) is lesser than that of the experimental value (~ 9.7 ppm) using the same parameters responsible for uncertainty measurement which leads to the quality enhancement in the measurement of pressure.

Keywords

Monte Carlo method Air piston gauge Pressure metrology Uncertainty 

Notes

Acknowledgements

The authors would like to thank dimensional metrology technical staff for the experimental support and CSIR-NPL for the partial financial support. Authors also want to thank Dr. D. K. Aswal (Director, CSIR-NPL) and Dr. Ranjana Mehrotra (Head, Physico-Mechanical Metrology Division, CSIR-NPL) for the constant encouragement. Mr. Vikas thanks UGC for the Ph.D. fellowship and AcSIR, CSIR-NPL for pursuing Ph.D. program.

References

  1. 1.
    M. Désenfant, M. Priel, Road map for measurement uncertainty evaluation, Meas. J. Int. Meas. Confed. 39 (2006) 841–848.  https://doi.org/10.1016/j.measurement.2006.04.008.CrossRefGoogle Scholar
  2. 2.
    Guide to the Expression of Uncertainty in Measurement, ISO/IEC Guid. 98 (1992):1993.Google Scholar
  3. 3.
    D. da Jornada, Uso de Planilhas Eletrônicas para Implementação do Método de Monte Carlo para Estimativa de Incerteza de Medição, Encontro Qual. Laboratórios. (2005).Google Scholar
  4. 4.
    P.M. Harris, M.G. Cox, On a Monte Carlo method for measurement uncertainty evaluation and its implementation, Metrologia. 51 (2014) S176–S182.  https://doi.org/10.1088/0026-1394/51/4/s176.ADSCrossRefGoogle Scholar
  5. 5.
    Krouwer JS, Critique of the Guide to the expression of uncertainty in measurement method of estimating and reporting uncertainty in diagnostic assays. PubMed NCBI, Clin Chem. 49 (2003) 1818–21. https://www.ncbi.nlm.nih.gov/pubmed/14578312.CrossRefGoogle Scholar
  6. 6.
    A. Kallner, L. Khorovskaya, T. Pettersson, A method to estimate the uncertainty of measurements in a conglomerate of instruments/laboratories, Scand. J. Clin. Lab. Invest. 65 (2005) 551–558.  https://doi.org/10.1080/00365510500206567.CrossRefGoogle Scholar
  7. 7.
    M. Panteghini, Application of traceability concepts to analytical quality control may reconcile total error with uncertainty of measurement, Clin. Chem. Lab. Med. 48 (2010) 7–10.  https://doi.org/10.1515/cclm.2010.020.CrossRefGoogle Scholar
  8. 8.
    B. Magnusson, H. Ossowicki, O. Rienitz, E. Theodorsson, Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles, Scand. J. Clin. Lab. Invest. 72 (2012) 212–220.  https://doi.org/10.3109/00365513.2011.649015.CrossRefGoogle Scholar
  9. 9.
    Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method (2008).Google Scholar
  10. 10.
    J.O. Westgard, R.N. Carey, S. Wold, Criteria for judging precision and accuracy in method development and evaluation, Clin. Chem. 20 (1974) 825–833. http://www.ncbi.nlm.nih.gov/pubmed/4835236 (accessed April 25, 2019).
  11. 11.
    J.S. Krouwer, Estimating total analytical error and its sources. Techniques to improve method evaluation, Arch. Pathol. Lab. Med. 116 (1992) 726–731. http://www.ncbi.nlm.nih.gov/pubmed/1497445 (accessed April 25, 2019).
  12. 12.
    J.S. Krouwer, Setting performance goals and evaluating total analytical error for diagnostic assays, Clin. Chem. 48 (2002) 919–927. http://www.ncbi.nlm.nih.gov/pubmed/12029009 (accessed April 25, 2019).
  13. 13.
    V.M. Chinchilli, W.G. Miller, Evaluating test methods by estimating total error, Clin. Chem. 40 (1994) 464–471. http://www.ncbi.nlm.nih.gov/pubmed/8131284 (accessed April 25, 2019).
  14. 14.
    U.S. Ellison Secretary, R. Bettencourt da Silva, E.P. Poland Fodor, R. Kaarls, E.B. Germany Magnusson, I.P. Robouch, E. St Gallen, S.A. van der Veen, M.W. Walsh Eurachem IRE Wegscheider, P. Yolci Omeroglu, E. Representatives, EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement Composition of the Working Group* EURACHEM, 2012. https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf (accessed April 25, 2019).
  15. 15.
    R. Frenkel, Statistical background to the ISO guide to the expression of uncertainty in measurement, 3rd ed., National Measurement Institute, Lindfield N.S.W., 2011. https://www.worldcat.org/title/statistical-background-to-the-iso-guide-to-the-expression-of-uncertainty-in-measurement/oclc/824564464 (accessed April 25, 2019).
  16. 16.
    M.G. Cox, B.R.L. Siebert, The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty, Metrologia. 43 (2006) S178–S188.  https://doi.org/10.1088/0026-1394/43/4/s03.ADSCrossRefGoogle Scholar
  17. 17.
    M. Cox, P. Harris, B.R.-L. Siebert, Evaluation of measurement uncertainty based on the propagation of distributions using Monte Carlo simulation, Meas. Tech. 46 (2003) 824–833.  https://doi.org/10.1023/b:mete.0000008439.82231.ad.CrossRefGoogle Scholar
  18. 18.
    G. Chew, T. Walczyk, A Monte Carlo approach for estimating measurement uncertainty using standard spreadsheet software, Anal. Bioanal. Chem. 402 (2012) 2463–2469.  https://doi.org/10.1007/s00216-011-5698-4.CrossRefGoogle Scholar
  19. 19.
    J. Singh, L.A. Kumaraswamidhas, A. Vijay, A. Kumar, N.D. Sharma, Estimation of uncertainty of effective area of a pneumatic pressure reference standard using Monte Carlo method, Indian J. Pure Appl. Phys. 54 (2016) 755–764.Google Scholar
  20. 20.
    J. Singh, L.A. Kumaraswamidhas, N.D. Sharma, A comparative investigation of pressure distortion coefficient of a pneumatic piston gauge and its associated uncertainty using varied approaches, Accredit. Qual. Assur. 24 (2019) 105–112.  https://doi.org/10.1007/s00769-018-1355-3.CrossRefGoogle Scholar
  21. 21.
    A.S. Tistomo, D. Larassati, A. Achmadi, Purwowibowo, G. Zaid, Estimation of uncertainty in the calibration of industrial platinum resistance thermometers (IPRT) using Monte Carlo Method, MAPAN. 32 (2017) 273–278.  https://doi.org/10.1007/s12647-017-0222-8.CrossRefGoogle Scholar
  22. 22.
    C.R. Tillyer, Error estimation in the quantification of alkaline phosphatase isoenzymes by selective inhibition methods, Clin. Chem. 34 (1988) 2490–2493. http://clinchem.aaccjnls.org/content/34/12/2490.short (accessed April 25, 2019).
  23. 23.
    R. Wood, A simulation study of the Westgard multi-rule quality-control system for clinical laboratories, Clin. Chem. 36 (1990) 462–5. http://www.ncbi.nlm.nih.gov/pubmed/2311213 (accessed April 25, 2019).
  24. 24.
    D. Theodorou, L. Meligotsidou, S. Karavoltsos, A. Burnetas, M. Dassenakis, M. Scoullos, Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: application to direct cadmium measurement in water by GFAAS, Talanta. 83 (2011) 1568–1574.  https://doi.org/10.1016/j.talanta.2010.11.059.CrossRefGoogle Scholar
  25. 25.
    V. Ramnath, Comparison of the GUM and Monte Carlo measurement uncertainty techniques with application to effective area determination in pressure standards, Int. J. Metrol. Qual. Eng. 1 (2010) 51–57.  https://doi.org/10.1051/ijmqe/2010013.CrossRefGoogle Scholar
  26. 26.
    E.W. Holmes, S.E. Kahn, P.A. Molnar, E.W. Bermes, Verification of reference ranges by using a Monte Carlo sampling technique, Clin. Chem. 40 (1994) 2216–2222. http://clinchem.aaccjnls.org/content/40/12/2216.short (accessed April 25, 2019).
  27. 27.
    T. Kouri, V. Kairisto, A. Virtanen, E. Uusipaikka, A. Rajamäki, H. Finneman, K. Juva, T. Koivula, V. Näntö, Reference intervals developed from data for hospitalized patients: computerized method based on combination of laboratory and diagnostic data, Clin. Chem. 40 (1994) 2209–2215. http://www.ncbi.nlm.nih.gov/pubmed/7988006 (accessed April 25, 2019).
  28. 28.
    A. Dobney, H. Klinkenberg, F. Souren, W. Van Borm, Uncertainty calculations for amount of chemical substance measurements performed by means of isotope dilution mass spectrometry as part of the PERM project, Anal. Chim. Acta. 420 (2000) 89–94.  https://doi.org/10.1016/s0003-2670(00)00971-5.CrossRefGoogle Scholar
  29. 29.
    T. Røraas, P.H. Petersen, S. Sandberg, Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals, Clin. Chem. 58 (2012) 1306–13.  https://doi.org/10.1373/clinchem.2012.187781.CrossRefGoogle Scholar
  30. 30.
    R.F. Martin, General deming regression for estimating systematic bias and its confidence interval in method-comparison studies, Clin. Chem. 46 (2000) 100–104.Google Scholar
  31. 31.
    J.C. Boyd, D.E. Bruns, Quality specifications for glucose meters: assessment by simulation modeling of errors in insulin dose, Clin. Chem. 47 (2001) 209–214.Google Scholar
  32. 32.
    J. Middleton, Effect of analytical error on the assessment of cardiac risk by the high-sensitivity C-reactive protein and lipid screening model, Clin. Chem. 48 (2002) 1955–1962.Google Scholar
  33. 33.
    J. Middleton, J.E. Vaks, Evaluation of assigned-value uncertainty for complex calibrator value assignment processes: a prealbumin example, Clin. Chem. 53 (2007) 735–741.  https://doi.org/10.1373/clinchem.2006.081174.CrossRefGoogle Scholar
  34. 34.
    S.Y. Woo, T.H. Yang, H.W. Song, Calibration of a built-in vacuum sensor in a gas pressure balance down to 1 Pa using RPG (Reverse-Operated Piston Gauge), Mapan J. Metrol. Soc. India. (2018).  https://doi.org/10.1007/s12647-017-0234-4.CrossRefGoogle Scholar
  35. 35.
    R. Kumar, M.S. Azam, S.K. Ghosh, S. Yadav, 70 years of elastohydrodynamic lubrication (EHL): a review on experimental techniques for film thickness and pressure measurement, MAPAN. 33 (2018) 481–491.  https://doi.org/10.1007/s12647-018-0277-1.CrossRefGoogle Scholar
  36. 36.
    A. Kumar, V.N. Thakur, A. Zafer, N.D. Sharma, S. Yadav, D.K. Aswal, Contributions of national standards on the growth of barometric pressure and vacuum industries, MAPAN. 34 (2019) 13–17.  https://doi.org/10.1007/s12647-018-0293-1.CrossRefGoogle Scholar
  37. 37.
    S. Yadav, A. Zafer, A. Kumar, N.D. Sharma, D.K. Aswal, Role of national pressure and vacuum metrology in Indian industrial growth and their global metrological equivalence, MAPAN. 33 (2018) 347–359.  https://doi.org/10.1007/s12647-018-0270-8.CrossRefGoogle Scholar
  38. 38.
    A. Kumar Vikas, N. Thakur, R. Sharma, H. Kumar, Omprakash, D. A. Vijaykumar, S. Yadav, On long-term stability of an air piston gauge maintained at National Physical Laboratory, India, Measurement. (2019).Google Scholar
  39. 39.
    National Accreditation Board for Testing and Calibration Laboratories (NABL) Document - 141, Department of Science and Technology, Government of India, New Delhi, 2000.Google Scholar
  40. 40.
    G. 1995 JCGM 100:2008, Evaluation of measurement data-Guide to the expression of uncertainty in measurement, 2008. www.bipm.org (accessed April 25, 2019).
  41. 41.
    A. Kumar, V.N. Thakur, R. Sharma, H. Kumar, Omprakash, S. Yadav, Uncertainty evaluation and phase variation of ultrasonic interferometer manometer: a primary pressure and vacuum standard, Vacuum. 165 (2019) 232–238.  https://doi.org/10.1016/j.vacuum.2019.04.023.CrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2019

Authors and Affiliations

  • Vikas N. Thakur
    • 1
    • 2
  • Sanjay Yadav
    • 1
    • 2
  • Ashok Kumar
    • 1
    • 2
    Email author
  1. 1.CSIR-National Physical Laboratory (CSIR-NPL)DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)DelhiIndia

Personalised recommendations