Advertisement

MAPAN

pp 1–7 | Cite as

Vertical Profiling of Radio Refractivity and Associated Parameters Using Tethered Balloon Over New Delhi

  • A. Ahlawat
  • S. K. MishraEmail author
  • M. V. S. N. Prasad
  • C. Sharma
  • V. Goel
  • S. R. Radhakrishnan
  • B. Gupta
Original Paper
  • 4 Downloads

Abstract

Atmospheric radio refractivity and its vertical gradient affect electromagnetic (EM) wave propagation mostly in the lower troposphere. The vertical profiles of the radio refractivity over New Delhi are very limited that inspired us to study the same using tethered balloon facility. Here, we investigated radio refractivity and its gradient over New Delhi (28°38′10″N, 77°10′17″E) using radiosonde balloon observation for one week (February 21–27, 2014). Vaisala RS 80 radiosonde device used during this experiment comprised of the individually factory-calibrated temperature, pressure and humidity sensors. The resolution of temperature sensor, pressure sensor and humidity sensor is 0.1 °C, 0.1 hpa and 1% RH, respectively. The refractivity measured using radiosonde has been observed to be reduced by 8.6% at 930 masl (mean above sea level) relative to that of ground level (i.e., 230 masl) during up-leg observation (7:00–7:30 PM), while the same has been found to be increased by 10.8% at ground level relative to that of 930 masl during down-leg observation (3:30–4:00 AM). Though it is a small set of information pertaining to refractivity observations using tethered balloon, certainly it can provide micro-insights of the meteorological effects on radio wave propagation better than that of routine experiments. The present study could be crucial for understanding the probable effects on radio wave propagations within atmospheric boundary layer over the study region and would reduce the underlying uncertainties associated with such measurements.

Keywords

Refractivity Tethered balloon Gradient Atmospheric boundary layer 

Notes

Acknowledgements

The authors are thankful to Director NPL for his consistent support for the ongoing work. The authors acknowledge CSIR Network Project AIM_IGPHim (PSC-0112) for the financial support and TIFR Balloon Facility for the tethered hoisting.

References

  1. [1]
    B.R. Bean and E.J. Dutton, Radio meteorology, Dover Publications, New York (1968).Google Scholar
  2. [2]
    J.E. Freehafer, Tropospheric refraction. D.E. Kerr, Ed.; Propagation of short radio waves, McGraw-Hill, New York (1951) pp. 9–22.Google Scholar
  3. [3]
    H.V. Hitney, J. H. Richter, R.A. Pappert, K.D. Anderson and G.B. Baumgartner, Tropospheric radio propagation assessment, Proc. IEEE, 73 (1985) 265–283.ADSCrossRefGoogle Scholar
  4. [4]
    M.P.M. Hall, Effects of the troposphere on radio communication, Peter Pelegrinus, London (1979).Google Scholar
  5. [5]
    J.R. Wang, P. Racette, M.E. Triesky, E.V. Browell, S. Ismail and L.A. Chang, Profiling of atmospheric water vapor with MIR and LASE, IEEE Trans. Geosci. Remote Sens., 40 (2002) 1211–1219.ADSCrossRefGoogle Scholar
  6. [6]
    B.L. Cheong, R.D. Palmer, C.D. Curtis, T.Y. Yu, D.S. Zrnic and D. Forsyth, Refractivity retrieval using the phased-array radar: first results and potential for multimission operation, IEEE Trans. Geosci. Remote Sens., 46 (2008) 2527–2537.ADSCrossRefGoogle Scholar
  7. [7]
    S.L. Lystad, Improved clear-air refractivity parameters and atmospheric description using high resolution radiosondes, presented at the XXVIIth URSI General Assembly, Maastrich, The Netherlands (2002).Google Scholar
  8. [8]
    S. Ali, S.A. Malik, K. S. Alimgeer, S.A. Khan and R.L. Ali, Statistical estimation of tropospheric radio refractivity derived from 10 years meteorological data, J. Atmos. Sol. Terr. Phys., 77 (2012) 96–103.ADSCrossRefGoogle Scholar
  9. [9]
    The Radio Refractive Index: its formula and refractivity data, Rec. ITUR P.453-9 (2009).Google Scholar
  10. [10]
    S.R. Radhakrishnan, B.C. Arya, C. Sharma et al., Studies on low altitude clouds over New Delhi, India using Lidar, MAPAN-J. Metrol. Soc India, 31 (2016) 137.  https://doi.org/10.1007/s12647-016-0166-4.Google Scholar
  11. [11]
    M. Grabner and R. Kvicera, Refractive index measurements in the lowest troposphere in the Czech Republic, J. Atmos. Sol. Terr. Phys., 68 (2006) 1334–1339.ADSCrossRefGoogle Scholar
  12. [12]
    K.H. Craig, Clear-air characteristics of the troposphere, L. Barclay, Ed.; Propagation of Radiowaves, 2nd ed., The Institution of Electrical Engineering, London, U.K. (2003) pp. 103–128.CrossRefGoogle Scholar
  13. [13]
    S.K. Mishra, A. Ahlawat, D. Khosla, C. Sharma, M.V.S.N. Prasad, S. Singh, B. Gupta, Tulsi, D. Sethi, P.R. Sinha, D.K. Ojha, A. Wiedensohler, R.K. Kotnala, Experimental investigation of variations in morphology, composition and mixing-state of boundary layer aerosol: a balloon-based study over urban environment (New Delhi), Atmos. Environ., 185 (2018) 243–252.ADSCrossRefGoogle Scholar
  14. [14]
    M.V.S.N. Prasad, C. Sharma, B.C. Arya, et al., Experimental facilities to monitor various types of atmospheric parameters in the Radio and Atmospheric Sciences Division (RASD) of CSIR-National Physical Laboratory, MAPAN-J. Metrol. Soc India, 28 (2013) 193–203.Google Scholar
  15. [15]
    E. Valma, M. Tamosiunaite, S. Tamosiunas, M. Tamosiuniene and M. Zilinskas, Determination of radio refractive index using meteorological data, Electron. Electr. Eng., 10 (2010) 125–128.Google Scholar
  16. [16]
    J.T. Priestley and R.J. Hill, Measuring high-frequency refractive index in the surface layer, J. Atmos. Surf. Layer, 2 (1985) 233–251.ADSGoogle Scholar
  17. [17]
    N.I. Kablak, Refractive index and atmospheric correction to the distance to the Earth’s artificial satellites, Kinemat. Phys. Celest. Bodies, 23 (2007) 84–88.ADSCrossRefGoogle Scholar
  18. [18]
    M. Grabner, V. Kvicera, P. Pechac, M. Kvicera, P. Valtr and A. Martellucci, World maps of atmospheric refractivity statistics, IEEE Trans. Antennas Propag., 62 (2014).Google Scholar
  19. [19]
    J. Gao, K. Brewster and M. Xue, Variation of radio refractivity with respect to moisture and temperature and influence on radar ray path, Adv. Atmos. Sci., 25 (2008) 1098–1106.ADSCrossRefGoogle Scholar
  20. [20]
    A.T. Adediji and M.O. Ajewole, Vertical profile of radio refractivity gradient in Akure South-West Nigeria, Progress Electromagn. Res. C, 4 (2008) 157–168.Google Scholar
  21. [21]
    M.I. Ansari, S.K. Kundu, K.C. Saikrishnan, R. Madan, Measurement and analysis of refractive index structure constant Cn2 profile over Delhi on diurnal and seasonal basis, Mausam, 64 (2013) 363–370.Google Scholar
  22. [22]
    Radartutorial.eu., Propagation of electromagnetic waves, www.radartutorial.eu/07.wa-ves/wa17.en.html, viewed March 03, 2012.
  23. [23]
    D.F. Gingras, P. Gerstoft and N.L. Gerr, Electromagnetic matched field processing: basic concepts and tropospheric simulations, IEEE Trans. Antennas Propag., 45 (1997) 1536–1545.ADSCrossRefGoogle Scholar
  24. [24]
    P. Valtr, P. Pechac, V. Kvicera, M. Grabner, Estimation of the refractivity structure of the lower troposphere from measurements on a terrestrial multiple receiver radio link, IEEE Trans. Antenna Propag., 59 (2011).Google Scholar
  25. [25]
    V. Louf, O. Pujol, H. Sauvageot, The seasonal and diurnal cycles of refractivity and anomalous propagation in the Sahelian Area from microwave radiometric profiling, J. Atmos. Ocean. Technol., 33 (2016).Google Scholar
  26. [26]
    G. Manjula, M. Roja Raman, M. Venkat Ratnam, A. V. Chandrasekhar and S. Vijaya Bhaskara Rao, Diurnal variation of ducts observed over a tropical station, Gadanki, using high resolution GPS radiosonde observations, Radio Sci., 51 (2016) 247–258.Google Scholar
  27. [27]
    K.E. Ukhurebor and S.O. Azi, Review of methodology to obtain parameters for radio wave propagation at low altitudes from meteorological data: New results for Auchi area in Edo State, Nigeria, J. King Saudi Univ. Sci., (2018)  https://doi.org/10.1016/j.jksus.2018.03.001.
  28. [28]
    S.M. Kulshrestha and S.K. Srivastav, Characterization of Indian trioposophere in relation to communication-radio refractivity gradients and ducting, Indian J. Radio Space Phys., 19 (1990) 319–325.ADSGoogle Scholar
  29. [29]
    E.S. Falodun and L.B. Kolawole, Studies of super-refractivity and ducting of radiowaves in Nigeria, Niger. J. Pure Appl. Phys., 1 (2000) 5–10.CrossRefGoogle Scholar
  30. [30]
    S.B.S.S. Sarma, High resolution radio refractive index studies in India using airborne microwave refractometer, Proc. Indian Acad. Sci., 100 (1991) 145–154.Google Scholar
  31. [31]
    C.J. Johny, S.K. Sarkar and D. Punyasesudu, Atmospheric phenomena derived from radiosonde & GPS occultation measurements for various application related studies, J. Earth Syst. Sci., 118 (2009) 49–59.ADSCrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2019

Authors and Affiliations

  • A. Ahlawat
    • 1
    • 2
  • S. K. Mishra
    • 1
    • 2
    Email author
  • M. V. S. N. Prasad
    • 1
  • C. Sharma
    • 1
    • 2
  • V. Goel
    • 1
    • 2
  • S. R. Radhakrishnan
    • 1
    • 2
  • B. Gupta
    • 1
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Academy of Scientific and Innovative ResearchGhaziabadIndia

Personalised recommendations