pp 1–6 | Cite as

Experimental and Theoretical Study of the Measured Wavelength of Laser Light Using Mach–Zehnder interferometer

  • Hameed NaserEmail author
  • Haider Mohammed Shanshool
  • Saaid Flaih Hassan
  • Amer B. Dheyab
Original Paper


In this research, the experimental and theoretical studies to measure the wavelength of laser light by Mach–Zehnder interferometer were conducted. Then, the results were compared with Zemax software. The fringes have been obtained both as shining and dark. The wavelength of laser light and the diameter of fringes were calculated by the optical system. The calculation relies on the measure of the airy disk diameter, whose approximation is directly proportional to the wavelength of the laser source; and to the space between the aperture and the image plane. However, the calculation is reciprocally proportional to the diameter of the aperture. Then, the results were compared with Zemax software, where the ratio of error is very small.


Mach–Zehnder Diode laser Interference fringes Ray-tracing software 



  1. [1]
    L. Zehnder, Ein neuer interferenzrefraktor, Springer, Berlin, (1891).Google Scholar
  2. [2]
    L. Zehnder, Instrum. Z., 11 (1891) 275.Google Scholar
  3. [3]
    Z. Ludwig Mach, Instrumentenkunde., 12 (1892) 89.Google Scholar
  4. [4]
    J.M. Simon, S.A. Comastri and R.M. Echarri, The Mach–Zehnder interferometer: examination of a volume by non-classical localization plane shifting, J. Opt. A Pure Appl. Opt., 3 (2001) 242.ADSCrossRefGoogle Scholar
  5. [5]
    J. Simon, M. Simon, R. Echarri and M. Garea, Fringe localization in interferometers illuminated by a succession of incoherent line sources, J. Mod. Opt., 45 (1998) 2245–2254.ADSCrossRefGoogle Scholar
  6. [6]
    F. Boudaoud and M. Lemerini, Using a Mach–Zehnder interferometer to deduce nitrogen density mapping, Chin. Phys. B, 24 (2015) 075205.ADSCrossRefGoogle Scholar
  7. [7]
    Y. Zhou, T. Shen, B. Sun and Y. Feng, Research and development of testing aspheric surfaces using two-wavelength interferometer methods, Information science and electronic engineering: proceedings of the 3rd international conference of electronic engineering and information science (ICEEIS 2016), January 4–5, 2016, CRC Press, Harbin (2016) p. 297.Google Scholar
  8. [8]
    P. Fox, R. Scholten, M. Walkiewicz and R.E. Drullinger, A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement, Am. J. Phys., 67 (1999) 624–630.ADSCrossRefGoogle Scholar
  9. [9]
    T. Catunda, J. Sartori and L. Nunes, Plane wave interference: a didactic experiment to measure the wavelength of light, Am. J. Phys., 66 (1998) 548–549.ADSCrossRefGoogle Scholar
  10. [10]
    A. Kahane, M. O’Sullivan, N. Sanford and B. Stoicheff, Vernier fringe-counting device for laser wavelength measurements, Rev. Sci. Instrum., 54 (1983) 1138–1142.ADSCrossRefGoogle Scholar
  11. [11]
    A. Roy and S. Ghosh, Evolution of photon beams through a nested Mach–Zehnder interferometer using classical states of light. arXiv preprint arXiv:1701.03074 [quant-ph] (2017).
  12. [12]
    A. Hanim, H. Hazura, S. Idris, A.M. Zain, F. Salehuddin and A.H. Afifah-Maheran, Performance of different Mach–Zehnder interferometer (MZI) structures for optical modulator, J. Telecommun. Electron. Comput. Eng. (JTEC), 9 (2017) 25–29.Google Scholar
  13. [13]
    K. Bartkiewicz, A. Černoch, D. Javůrek, K. Lemr, J. Soubusta and J. Svozilík, One-state vector formalism for the evolution of a quantum state through nested Mach–Zehnder interferometers, Phys. Rev. A, 91 (2015) 012103.ADSCrossRefGoogle Scholar
  14. [14]
    N. Garg, K. Soni, A. Kumar and T Saxena, Applications of laser interferometry in providing traceable vibration measurements in India, MAPAN-J. Metrol. Soc India, 30 (2015) 91–104.Google Scholar
  15. [15]
    M.G. Paris, Entanglement and visibility at the output of a Mach–Zehnder interferometer, Phys. Rev. A, 59 (1999) 1615.ADSCrossRefGoogle Scholar
  16. [16]
    G. Haack, H. Förster and M. Büttiker, Parity detection and entanglement with a Mach–Zehnder interferometer, Phys. Rev. B, 82 (2010) 155303.ADSCrossRefGoogle Scholar
  17. [17]
    M. Bahrawi and N. Farid, Application of a commercially available displacement measuring interferometer to line scale measurement and uncertainty of measurement, MAPAN-J. Metrol. Soc India, 25 (2010) 259–264.Google Scholar
  18. [18]
    E.I. Pacheco-Chacon, E. Gallegos-Arellano, J.M. Sierra-Hernandez, R. Rojas-Laguna, J.M. Estudillo-Ayala, E. Hernandez, D. Jauregui-Vazquez and J.C. Hernandez-Garcia, Torsion sensing setup based on a Mach–Zehnder interferometer with photonics crystal fiber, Photonic Instrumentation Engineering IV: International Society for Optics and Photonics (2017) p. 101100V.Google Scholar
  19. [19]
    S. Srisuwan, C. Sirisathitkul and S. Danworaphong, Validiation of photometric ellipsometry for refractive index and thickness measurements, MAPAN-J. Metrol. Soc India, 30 (2015) 31–36.Google Scholar
  20. [20]
    L. Fu, F. Hashmi, Z. Jun-Xiang and Z. Shi-Yao, An ideal experiment to determine the ‘past of a particle’ in the nested Mach–Zehnder interferometer, Chin. Phys. Lett., 32 (2015) 050303.CrossRefGoogle Scholar
  21. [21]
    R.B. Griffiths, Particle path through a nested Mach–Zehnder interferometer, Phys. Rev. A, 94 (2016) 032115.ADSCrossRefGoogle Scholar
  22. [22]
    G. Reid, Automatic fringe pattern analysis: a review, Opt. Lasers Eng., 7 (1986) 37–68.ADSCrossRefGoogle Scholar
  23. [23]
    U. Rivera-Ortega and B. Pico-Gonzalez, Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes, Phys. Educ., 51 (2015) 015012.ADSCrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2019

Authors and Affiliations

  1. 1.Directorate of Material ResearchMinistry of Science and TechnologyBaghdadIraq

Personalised recommendations