Rational Design, Synthesis, and In Vitro Neuroprotective Evaluation of Novel Glitazones for PGC-1α Activation via PPAR-γ: a New Therapeutic Strategy for Neurodegenerative Disorders

  • Antony Justin
  • Subhankar Mandal
  • P. Prabitha
  • S. Dhivya
  • S. Yuvaraj
  • Pradeep Kabadi
  • Satheesh John Sekhar
  • C. H. Sandhya
  • Ashish D. Wadhwani
  • Selvaraj Divakar
  • Jeyabalan Jeyaram Bharathi
  • Priya Durai
  • B. R. Prashantha KumarEmail author
Original Article


In the present study, two structurally diverse novel glitazones were designed and synthesized for activation of central PGC-1α signaling through stimulation of PPAR-γ receptor. The functional interaction between PGC-1α and PPAR-γ is a key interaction in the normal physiology of neuroprotective mechanism. Therefore, activation of PPAR-γ–dependent PGC-1α co-activator signaling could be an effective strategy to exhibit neuroprotection in several neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia. As part of rational design, analogs were designed manually based on principles of bioisosterism, followed by virtually screened using docking to predict the mode of interaction of compound towards the binding site and molecular dynamic simulation to observe the structural changes that occur during compound interaction with active site. The designed two glitazones (G1, G2) were synthesized and structurally analyzed. As part of evaluation, synthesized glitazones were subjected for preliminary neuroprotective evaluation in Lipopolysaccharide (LPS) intoxicated SH-SY5Y neuroblastoma cells. The results indicate that pre-treatment with synthesized glitazones have increased the percentage cell viability, protected the cell morphology, and decreased the release of pro-inflammatory cytokines (IL-1β, TNF-α), lipid peroxide (LPO), and nitric oxide (NO) level in LPS intoxicated SH-SY5Y cells. Interestingly, among the two glitazones, G2 has shown significant neuroprotection in comparison to G1 and neuroprotective effect exerted by G2 was similar and comparable with the standard pioglitazone. Altogether, neuroprotection exhibited by this non-thiazolidione–based glitazones during neuroinflammatory conditions may be attributed to the activation of central PGC-1α signaling via PPAR-γ receptor.


PGC-1α PPAR-γ Glitazones Docking Molecular dynamic simulation Cytokines Free radicals 


Funding Information

The authors sincerely thank the Department of Science and Technology—Science and Engineering Research Board (DST-SERB), New Delhi for extended financial support to carry out this project (Grant Sanction order No. CRG/2018/002084).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Supplementary material

12640_2019_132_MOESM1_ESM.doc (492 kb)
ESM 1 (DOC 492 kb)


  1. Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H (2004) Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1beta, and expression of caspase-11 in mice. J Biol Chem 279(49):51647–51653PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bala V, Chhonker YS, Hashim SR (2010) Synthesis and antimicrobial activity of Schiff bases derived from 2-formylphenoxy acetic acid. Asian J Chem 22(5):3447–3452Google Scholar
  3. Cardin S, Guasch E, Luo X, Naud P, Le Quang K, Shi Y, Tardif JC, Comtois P, Nattel S (2012) Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol 5(5):1027–1035PubMedCrossRefGoogle Scholar
  4. Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC (2011) Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12(10):7199–7215PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chiang MC, Cheng YC, Nicol CJ, Lin CH (2017) The neuroprotective role of rosiglitazone in advanced glycation end product treated human neural stem cells is PPARgamma-dependent. Int J Biochem Cell Biol 92:121–133PubMedCrossRefGoogle Scholar
  6. Choi MJ, Lee EJ, Park JS, Kim SN, Park EM, Kim HS (2017) Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-γ signaling pathway. Biochem Pharmacol 144:120–131PubMedCrossRefGoogle Scholar
  7. Clarke SD, Thuillier P, Baillie RA, Sha X (1999) Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors. Am J Clin Nutr 70(4):566–571PubMedCrossRefGoogle Scholar
  8. Corona JC, Duchen MR (2015) PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res 40(2):308–316PubMedCrossRefGoogle Scholar
  9. Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 169(3):453–459PubMedCrossRefGoogle Scholar
  10. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428PubMedCrossRefGoogle Scholar
  12. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138PubMedCrossRefGoogle Scholar
  13. Guasch L, Sala E, Castell-Auví A, Cedó L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardévol A, Valls C, Pujadas G, Garcia-Vallvé S (2012) Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 7(11):e50816PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hunter R, Bing G (2007) Agonism of peroxisome proliferator receptor-gamma may have therapeutic potential for neuroinflammation and Parkinsons disease. Curr Neuropharmacol 5(1):35–46CrossRefGoogle Scholar
  15. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W (2013) Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem 125(3):410–419PubMedPubMedCentralCrossRefGoogle Scholar
  17. Johri A, Chandra A, Flint Beal M (2013) PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic Biol Med 62:37–46PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kaja S, Duncan RS, Longoria S, Hilgenberg JD, Payne AJ, Desai NM, Parikh RA, Burroughs SL, Gregg EV, Goad DL, Koulen P (2011) Novel mechanism of increased Ca2+ release following oxidative stress in neuronal cells involves type 2 inositol-1,4,5-trisphosphate receptors. Neuroscience 175:281–291PubMedPubMedCentralCrossRefGoogle Scholar
  19. Katsouri L, Parr C, Bogdanovic N, Willem M, Sastre M (2011) PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. J Alzheimers Dis 25(1):151–162PubMedCrossRefGoogle Scholar
  20. Katsouri L, Lim YM, Blondrath K, Eleftheriadou I, Lombardero L, Birch AM, Mirzaei N, Irvine EE, Mazarakis ND, Sastre M (2016) PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci USA 113(43):12292–12297PubMedCrossRefGoogle Scholar
  21. Kulkarni SS, Gediya LK, Kulkarni VM (1999) Three-dimensional quantitative structure activity relationships (3-D-QSAR) of antihyperglycemic agents. Bioorg Med Chem 7(7):1475–1485PubMedCrossRefGoogle Scholar
  22. Lattke M, Reichel SN, Baumann B (2017) NF-κB-mediated astrocyte dysfunction initiates neurodegeneration. Oncotarget 8(31):50329–50330PubMedPubMedCentralCrossRefGoogle Scholar
  23. Leow-Dyke S, Allen C, Denes A, Nilsson O, Maysami S, Bowie AG, Rothwell NJ, Pinteaux E (2012) Neuronal Toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J Neuroinflammation 9:230PubMedPubMedCentralCrossRefGoogle Scholar
  24. Li Y, Kovach A, Suino-Powell K, Martynowski D, Xu HE (2008) Structural and biochemical basis for the binding selectivity of peroxisome proliferator-activated receptor gamma to PGC-1alpha. J Biol Chem 283(27):19132–19139PubMedPubMedCentralCrossRefGoogle Scholar
  25. Li H, Zhang Q, Yang X, Wang L (2017) PPAR-γ agonist rosiglitazone reduces autophagy and promotes functional recovery in experimental traumatic spinal cord injury. Neurosci Lett 650:89–96PubMedCrossRefGoogle Scholar
  26. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2. pii: 17023.Google Scholar
  27. Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, Graham SH, Chen J (2006) Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 97(2):435–448PubMedCrossRefGoogle Scholar
  28. Marmolino D, Manto M, Acquaviva F, Vergara P, Ravella A, Monticelli A, Pandolfo M (2010) PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS One 5(4):e10025PubMedPubMedCentralCrossRefGoogle Scholar
  29. Moreno S, Farioli-Vecchioli S, Cerù MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123(1):131–145PubMedCrossRefPubMedCentralGoogle Scholar
  30. Noworyta-Sokołowska K, Górska A, Gołembiowska K (2013) LPS-induced oxidative stress and inflammatory reaction in the rat striatum. Pharmacol Rep 65(4):863–869PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMedPubMedCentralCrossRefGoogle Scholar
  32. Patel SP, Cox DH, Gollihue JL, Bailey WM, Geldenhuys WJ, Gensel JC, Sullivan PG, Rabchevsky AG (2017) Pioglitazone treatment following spinal cord injury maintains acute mitochondrial integrity and increases chronic tissue sparing and functional recovery. Exp Neurol 293:74–82PubMedPubMedCentralCrossRefGoogle Scholar
  33. Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, Pasinetti GM (2009) PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 66(3):352–361PubMedPubMedCentralCrossRefGoogle Scholar
  34. Qiu D, Li XN (2015) Pioglitazone inhibits the secretion of proinflammatory cytokines and chemokines in astrocytes stimulated with lipopolysaccharide. Int J Clin Pharmacol Ther 53(9):746–752PubMedCrossRefPubMedCentralGoogle Scholar
  35. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147(1-2):56–61PubMedCrossRefPubMedCentralGoogle Scholar
  36. Randy LH, Guoying B (2007) Agonism of peroxisome proliferator receptor-gamma may have therapeutic potential for neuroinflammation and Parkinson’s disease. Curr Neuropharmacol 5(1):35–46PubMedPubMedCentralCrossRefGoogle Scholar
  37. Roeske-Nielsen A, Fredman P, Mansson JE, Bendtzen K, Buschard K (2004) Beta-galactosylceramide increases and sulfatide decreases cytokine and chemokine production in whole blood cells. Immunol Lett 91(2-3):205–211PubMedCrossRefPubMedCentralGoogle Scholar
  38. Róna-Vörös K, Weydt P (2010) The role of PGC-1α in the pathogenesis of neurodegenerative disorders. Curr Drug Targets 11(10):1262–1269PubMedCrossRefGoogle Scholar
  39. Rosenberger K, Derkow K, Dembny P, Krüger C, Schott E, Lehnardt S (2014) The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration. J Neuroinflammation 11:166PubMedPubMedCentralCrossRefGoogle Scholar
  40. Shah S, Baseer MAPG (2012) Synthesis and antimicrobial studies of some novel Schiff bases. Asian J Pharm Clin Res. 5(3):228–232Google Scholar
  41. Sharma N, Nehru B (2015) Characterization of the lipopolysaccharide induced model of Parkinson’s disease: role of oxidative stress and neuroinflammation. Neurochem Int 87:92–105PubMedCrossRefGoogle Scholar
  42. Skeel RD, Zhang G, Schlick T (1997) A family of symplectic integrators: stability, accuracy, and molecular dynamics applications. SIAM J Sci Comput 18(1):203–222CrossRefGoogle Scholar
  43. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408PubMedCrossRefGoogle Scholar
  44. Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, Kemnitz JW, Johnson JA, Emborg ME (2011) The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation 8:91PubMedPubMedCentralCrossRefGoogle Scholar
  45. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990–2001CrossRefGoogle Scholar
  46. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2(4):236–240PubMedPubMedCentralCrossRefGoogle Scholar
  47. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690PubMedPubMedCentralGoogle Scholar
  48. Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, Reddy JK (2010) Coactivators in PPAR-regulated gene expression, PPAR Res 2010. pii: 250126.Google Scholar
  49. Wu G, Robertson DH, Brooks CL 3rd, Vieth M (2003a) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562PubMedCrossRefGoogle Scholar
  50. Wu X, Milne JL, Borgnia MJ, Rostapshov AV, Subramaniam S, Brooks BR (2003b) A core-weighted fitting method for docking atomic structures into low-resolution maps: application to cryo-electron microscopy. J Struct Biol 141(1):63–76PubMedPubMedCentralCrossRefGoogle Scholar
  51. Yu HY, Cai YB, Liu Z (2015) Activation of AMPK improves lipopolysaccharide-induced dysfunction of the blood-brain barrier in mice. Brain Inj 29(6):777–784PubMedCrossRefGoogle Scholar
  52. Zhao X, Strong R, Zhang J, Sun G, Tsien JZ, Cui Z, Grotta JC, Aronowski J (2009) Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia. J Neurosci 29(19):6186–6195PubMedPubMedCentralCrossRefGoogle Scholar
  53. Zhao Z, Hu J, Gao X, Liang H, Liu Z (2014) Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood-brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol 97(3):386–392PubMedCrossRefGoogle Scholar
  54. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, Fu Y, Zhu L (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 9(1):5790PubMedPubMedCentralCrossRefGoogle Scholar
  55. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR, Global PD Gene Expression (GPEX) Consortium (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2(52):52–73CrossRefGoogle Scholar
  56. Zhu X, Chen C, Ye D, Guan D, Ye L, Jin J, Zhao H, Chen Y, Wang Z, Wang X, Xu Y (2012) Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ1-42-induced neurotoxicity. PLoS One 7(4):e35823PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zubrys A, Siebenmann CO (1954) Antituberculous isonicotinylhydrazones of low toxicity. Can J Chem 33(1):11–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Antony Justin
    • 1
  • Subhankar Mandal
    • 2
  • P. Prabitha
    • 2
  • S. Dhivya
    • 2
  • S. Yuvaraj
    • 2
  • Pradeep Kabadi
    • 3
  • Satheesh John Sekhar
    • 1
  • C. H. Sandhya
    • 1
  • Ashish D. Wadhwani
    • 1
  • Selvaraj Divakar
    • 1
  • Jeyabalan Jeyaram Bharathi
    • 1
  • Priya Durai
    • 2
  • B. R. Prashantha Kumar
    • 2
    Email author
  1. 1.Department of PharmacologyJSS College of PharmacyOotyIndia
  2. 2.Department of Pharmaceutical ChemistryJSS College of PharmacyMysuruIndia
  3. 3.Bioanalytical DivisionBiocon Pvt. LtdBengaluruIndia

Personalised recommendations