Skip to main content
Log in

Motor Neurons Pathology After Chronic Exposure to MPTP in Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson’s disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD. In the present study, we demonstrate that chronic exposure to low amounts of MPTP (10 mg/kg daily, × 21 days) significantly reduces motor neurons in the ventral lumbar spinal cord while increasing α-synuclein immune-staining within the ventral horn. Spinal cord involvement in MPTP-treated mice extends to Calbindin D28 KDa immune-reactive neurons other than motor neurons within lamina VII. These results were obtained in the absence of significant reduction of dopaminergic cell bodies in the Substantia Nigra pars compacta, while a slight decrease was documented in striatal tyrosine hydroxylase immune-staining. Thus, the present study highlights neuropathological similarities between dopaminergic neurons and spinal motor neurons and supports the pathological involvement of spinal cord in PD and experimental MPTP-induced parkinsonism. Remarkably, the toxic threshold for motor neurons appears to be lower compared with nigral dopaminergic neurons following a chronic pattern of MPTP intoxication. This sharply contrasts with previous studies showing that MPTP intoxication produces comparable neuronal loss within spinal cord and Substantia Nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Uéda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6:435–442

    PubMed  Google Scholar 

  • Alvarez FJ, Fyffe RE (2007) The continuing case for the Renshaw cell. J Physiol 584:31–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia G, Busceti CL, Pontarelli F, Biagioni F, Fornai F, Paparelli A, Bruno V, Ruggieri S, Nicoletti F (2003) Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology 45:155–166

    CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 24:828–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    CAS  PubMed  Google Scholar 

  • Braak H, Sastre M, Bohl JR, de Vos RA, Del Tredici K (2007) Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 113:421–429

    PubMed  Google Scholar 

  • Brownstone RM, Lancelin C (2018) Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosis. J Neurophysiol 119:1782–1794

    PubMed  PubMed Central  Google Scholar 

  • Chandra S, Gallardo G, Fernandez-Chacon R, Schlüter OM, Südhof TC (2005) Alpha-synuclein cooperates with CSP-alpha in preventing neurodegeneration. Cell 123:383-396.

    CAS  PubMed  Google Scholar 

  • Chang Q, Martin LJ (2009) Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. Am J Pathol 174:574–585

    PubMed  PubMed Central  Google Scholar 

  • Chiba K, Trevor A, Castagnoli NJr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574-578.

    CAS  PubMed  Google Scholar 

  • Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, Wille EJ, Beal MF (2008) Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of parkinsonism. J Neurochem 104:1613–1621

    CAS  PubMed  Google Scholar 

  • Del Tredici K, Braak H (2012) Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol 124:643–664

    PubMed  Google Scholar 

  • Ferrucci M, Biagioni F, Vivacqua G, Busceti CL, Bartalucci A, Soldani P, D'Este L, Fumagalli L, Fornai F (2013) The neurobiology of the spinal cord in experimental parkinsonism and Parkinson’s disease. Arch Ital Biol 151:219–234

    PubMed  Google Scholar 

  • Ferrucci M, Lazzeri G, Flaibani M, Biagioni F, Cantini F, Madonna M, Bucci D, Limanaqi F, Soldani P, Fornai F (2018) In search for a gold-standard procedure to count motor neurons in the spinal cord. Histol Histopathol 33:1021–1046

    PubMed  Google Scholar 

  • Fornai F, Vaglini F, Maggio R, Bonuccelli U, Corsini GU (1996) Excitatory amino acids and MPTP toxicity. Adv Neurol 69:167–176

    CAS  PubMed  Google Scholar 

  • Fornai F, Vaglini F, Maggio R, Bonuccelli U, Corsini GU (1997a) Species differences in the role of excitatory amino acids in experimental parkinsonism. Neurosci Biobehav Rev 21:401–415

    CAS  PubMed  Google Scholar 

  • Fornai F, Alessandrì MG, Torracca MT, Bassi L, Corsini GU (1997b) Effects of noradrenergic lesions on MPTP/MPP+ kinetics and MPTP-induced nigrostriatal dopamine depletions. J Pharmacol Exp Ther 283:100–107

    CAS  PubMed  Google Scholar 

  • Fornai F, Giorgi FS, Alessandrí MG, Giusiani M, Corsini GU (1999a) Effects of pretreatment with N-(2-chloroethyl)-N-ethyl-2- bromobenzylamine (DSP-4) on methamphetamine pharmacokinetics and striatal dopamine losses. J Neurochem 72:777–784

    CAS  PubMed  Google Scholar 

  • Fornai F, Chen K, Giorgi FS, Gesi M, Alessandri MG, Shih JC (1999b) Striatal dopamine metabolism in monoamine oxidase B-deficient mice: a brain dialysis study. J Neurochem 73:2434–2440

    CAS  PubMed  Google Scholar 

  • Fornai F, Carrì MT, Ferri A, Paolucci E, Prisco S, Bernardi G, Rotilio G, Mercuri NB (2002) Resistance to striatal dopamine depletion induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice expressing human mutant Cu,Zn superoxide dismutase. Neurosci Lett 325:124-128.

    CAS  PubMed  Google Scholar 

  • Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha synuclein. Proc Natl Acad Sci U S A 102:3413–3418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fornai F, Lazzeri G, Bandettini Di Poggio A, Soldani P, De Blasi A, Nicoletti F, Ruggieri S, Paparelli A (2006) Convergent roles of alpha-synuclein, DA metabolism, and the ubiquitin-proteasome system in nigrostriatal toxicity. Ann N Y Acad Sci 1074:84–89

    CAS  PubMed  Google Scholar 

  • Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, Lazzeri G, Spallone A, Bellio N, Lenzi P, Modugno N, Siciliano G, Isidoro C, Murri L, Ruggieri S, Paparelli A (2008a) Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 105:2052–2057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fornai F, Longone P, Ferrucci M, Lenzi P, Isidoro C, Ruggieri S, Paparelli A (2008b) Autophagy and amyotrophic lateral sclerosis: the multiple roles of lithium. Autophagy 4:527–530

    CAS  PubMed  Google Scholar 

  • Fyffe RE (1990) Evidence for separate morphological classes of Renshaw cells in the cat’s spinal cord. Brain Res 536:301–304

    CAS  PubMed  Google Scholar 

  • Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F (2000) The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 24:655–668

    CAS  PubMed  Google Scholar 

  • Gesi M, Santinami A, Ruffoli R, Conti G, Fornai F (2001) Novel aspects of dopamine oxidative metabolism (confounding outcomes take place of certainties). Pharmacol Toxicol 89:217–224

    CAS  PubMed  Google Scholar 

  • Gesi M, Lazzeri G, Ferrucci M, Pellegrini A, Lenzi P, Ruggieri S, Fornai F, Paparelli A (2006) Inclusion dynamics in PC12 is comparable between amphetamines and MPTP. Ann N Y Acad Sci 1074:315–319

    CAS  PubMed  Google Scholar 

  • Gibrat C, Saint-Pierre M, Bousquet M, Lévesque D, Rouillard C, Cicchetti F (2009) Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 109:1469–1482

    CAS  PubMed  Google Scholar 

  • Giorgi FS, Bandettini di Poggio A, Battaglia G, Pellegrini A, Murri L, Ruggieri S, Paparelli A, Fornai F (2006) A short overview on the role of alpha-synuclein and proteasome in experimental models of Parkinson’s disease. J Neural Transm Suppl 70:105–109

    CAS  Google Scholar 

  • Gundersen HJ, Jensen EB, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology reconsidered. J Microsc 193:199–211

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10:171–183

    CAS  PubMed  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151

    CAS  PubMed  Google Scholar 

  • Jankowska E, Lindström S (1971) Morphological identification of Renshaw cells. Acta Physiol Scand 81:428–430

    CAS  PubMed  Google Scholar 

  • King MA, Scotty N, Klein RL, Meyer EM (2002) Particle detection, number estimation, and feature measurement in gene transfer studies: optical fractionator stereology integrated with digital image processing and analysis. Methods 28:293–299

    CAS  PubMed  Google Scholar 

  • Kühn K, Wellen S, Link N, Maskri L, Lubbert H, Stichel CC (2003) The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neurosci 17:1–12

    PubMed  Google Scholar 

  • Lazzeri G, Lenzi P, Busceti CL, Ferrucci M, Falleni A, Bruno V, Paparelli A, Fornai F (2007) Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons. J Neurochem 101:1414–1427

    CAS  PubMed  Google Scholar 

  • Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K, Dürr A, Melki R, Verny C, Brice A, French Parkinson's Disease Genetics Study Group (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73:459–471

    CAS  PubMed  Google Scholar 

  • Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev AY, Berezhnov AV, Yao Z, Little D, Banushi B, Al-Menhali AS, Ranasinghe RT, Whiten DR, Yapom R, Dolt KS, Devine MJ, Gissen P, Kunath T, Jaganjac M, Pavlov EV, Klenerman D, Abramov AY, Gandhi S (2018) α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9:2293.

  • Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311:464–467

    CAS  PubMed  Google Scholar 

  • Martin LJ (2007) Transgenic mice with human mutant genes causing Parkinson’s disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci 18:115–136

    CAS  PubMed  Google Scholar 

  • Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez JH, Fuentes F, Vanasco V, Alvarez S, Alaimo A, Cassina A, Coluccio Leskow F, Velazquez F (2018) Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Arch Biochem Biophys 651:1–12

    PubMed  Google Scholar 

  • Masilamoni GJ, Smith Y (2018) Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson’s disease. J Neural Transm (Vienna) 125:337–363

    CAS  Google Scholar 

  • Meredith GE, Totterdell S, Potashkin JA, Surmeier DJ (2008) Modelling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 14:S112–S115

    PubMed  PubMed Central  Google Scholar 

  • Muñoz-Manchado AB, Villadiego J, Romo-Madero S, Suárez-Luna N, Bermejo-Navas A, Rodríguez-Gómez JA, Garrido-Gil P, Labandeira-García JL, Echevarría M, López-Barneo J, Toledo-Aral JJ (2016) Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. J Neurochem 136:373–387

    PubMed  Google Scholar 

  • Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M (1994) Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 89:347–352

    CAS  PubMed  Google Scholar 

  • Natale G, Biagioni F, Vivacqua G, D'Este L, Fumagalli L, Fornai F (2013) The neurobiology of dysautonomia in Parkinson’s disease. Arch Ital Biol 151:203–218

    PubMed  Google Scholar 

  • Natale G, Lenzi P, Lazzeri G, Falleni A, Biagioni F, Ryskalin L, Fornai F (2015) Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis. Front Cell Neurosci 9:434

    PubMed  PubMed Central  Google Scholar 

  • Nielsen MS, Glud AN, Møller A, Mogensen P, Bender D, Sørensen JC, Doudet D, Bjarkam CR (2016) Continuous MPTP intoxication in the Göttingen minipig results in chronic parkinsonian deficits. Acta Neurobiol Exp (Wars) 76:199–211

    Google Scholar 

  • Pasquali L, Longone P, Isidoro C, Ruggieri S, Paparelli A, Fornai F (2009) Autophagy, lithium, and amyotrophic lateral sclerosis. Muscle Nerve 40:173–194

    CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates (2nd Edition). Academic Press, San Diego

    Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    CAS  PubMed  Google Scholar 

  • Pinto de Souza C, Hamani C, Oliveira Souza C, Lopez Contreras WO, Dos Santos Ghilardi MG, Cury RG, Reis Barbosa E, Jacobsen Teixeira M, Talamoni Fonoff E (2017) Spinal cord stimulation improves gait in patients with Parkinson's disease previously treated with deep brain stimulation. Mov Disord 32:278–282

    PubMed  Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    PubMed  Google Scholar 

  • Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA (2005) Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20:898–906

    CAS  PubMed  Google Scholar 

  • Raudino F, Leva S (2012) Involvement of the spinal cord in Parkinson’s disease. Int J Neurosci 122:1–8

    PubMed  Google Scholar 

  • Ruffoli R, Bartalucci A, Frati A, Fornai F (2015) Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis. Front Cell Neurosci 9:341

    PubMed  PubMed Central  Google Scholar 

  • Ruffoli R, Biagioni F, Busceti CL, Gaglione A, Ryskalin L, Gambardella S, Frati A, Fornai F (2017) Neurons other than motor neurons in motor neuron disease. Histol Histopathol 32:1115–1123

    CAS  PubMed  Google Scholar 

  • Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneurons degeneration in spinal cord of Lewis rats. Neuroscience 146:741–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samantaray S, Butler JT, Ray SK, Banik NL (2008a) Extranigral neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 1139:331–336

    CAS  PubMed  Google Scholar 

  • Samantaray S, Knaryan VH, Butler JT, Ray SK, Banik NL (2008b) Spinal cord degeneration in C57BL/6N mice following induction of experimental parkinsonism with MPTP. J Neurochem 104:1309–1320

    CAS  PubMed  Google Scholar 

  • Samantaray S, Knaryan VH, Shields DC, Cox AA, Haque A, Banik NL (2015) Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Mol Neurobiol 52:1054–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Guajardo V, Tentillier N, Romero-Ramos M (2015) The relation between α-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience 302:47–58

    CAS  PubMed  Google Scholar 

  • Schapira AH (2011) Mitochondrial pathology in Parkinson’s disease. Mt Sinai J Med 78:872–881

    PubMed  Google Scholar 

  • Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:435–450

    CAS  PubMed  Google Scholar 

  • Schlüter OM, Fornai F, Alessandrí MG, Takamori S, Geppert M, Jahn R, Südhof TC (2003) Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 118:985–1002

    PubMed  Google Scholar 

  • Shepherd KR, Lee ES, Schmued L, Jiao Y, Ali SF, Oriaku ET, Lamango NS, Soliman KF, Charlton CG (2006) The potentiating effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on paraquat-induced neurochemical and behavioral changes in mice. Pharmacol Biochem Behav 83:349–359

    CAS  PubMed  Google Scholar 

  • Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Obeso JA, Halliday GM (2017) Parkinson’s disease is not simply a prion disorder. J Neurosci 37:9799–9807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong J, Hornykiewicz O, Kish SJ (2006) Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline. Arch Neurol 63:1724–1728

    PubMed  Google Scholar 

  • Tretiakoff C (1919) Contributions a l’etude de l’anatomie pathologique du locus niger de soemmering avec quelques deductions relatives a la pathogenie des troubles de tonus musculaire et de la maladie de Parkinson. (Thesis, Paris).

  • Trist BG, Davies KM, Cottam V, Genoud S, Ortega R, Roudeau S, Carmona A, De Silva K, Wasinger V, Lewis SJG, Sachdev P, Smith B, Troakes C, Vance C, Shaw C, Al-Sarraj S, Ball HJ, Halliday GM, Hare DJ, Double KL (2017) Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson’s disease brain. Acta Neuropathol 134:113–127

    CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Ishihara T, Higuchi M, Yoshiyama Y, Hong M, Zhang B, Forman MS, Zhukareva V, Lee VM (2002) Amyotrophic lateral sclerosis/parkinsonism dementia complex: transgenic mice provide insights into mechanisms underlying a common tauopathy in an ethnic minority on Guam. Exp Neurol 176:1–11

    CAS  PubMed  Google Scholar 

  • Vivacqua G, Yin JJ, Casini A, Li X, Li YH, D’Este L, Chan P, Renda TG, Yu S (2009) Immunolocalization of alpha-synuclein in the rat spinal cord by two novel monoclonal antibodies. Neuroscience 158:1478–1487

    CAS  PubMed  Google Scholar 

  • Vivacqua G, Casini A, Vaccaro R, Fornai F, Yu S, D’Este L (2011a) Different sub-cellular localization of alpha-synuclein in the C57BL/6J mouse’s central nervous system by two novel monoclonal antibodies. J Chem Neuroanat 41:97–110

    CAS  PubMed  Google Scholar 

  • Vivacqua G, Casini A, Vaccaro R, Parisi Salvi E, Pasquali L, Fornai F, Yu S, D’Este L (2011b) Spinal cord and parkinsonism: neuromorphological evidences in humans and experimental studies. J Chem Neuroanat 42:327–340

    CAS  PubMed  Google Scholar 

  • Vivacqua G, Biagioni F, Yu S, Casini A, Bucci D, D'Este L, Fornai F (2012) Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. J Chem Neuroanat 44:76–85

    CAS  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    CAS  PubMed  Google Scholar 

  • Wootz H, Fitzsimons-Kantamneni E, Larhammar M, Rotterman TM, Enjin A, Patra K, André E, Van Zundert B, Kullander K, Alvarez FJ (2013) Alterations in the motor neuron-renshaw cell circuit in the Sod1(G93A) mouse model. J Comp Neurol 521:1449–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TS, Huang YP, Wang HI, Pan SL (2016) Spinal cord injury and Parkinson’s disease: a population-based, propensity score-matched, longitudinal follow-up study. Spinal Cord 54:1215–1219

    PubMed  Google Scholar 

  • Yu S, Li X, Liu G, Han J, Zhang C, Li Y, Xu S, Liu C, Gao Y, Yang H, Uèda K, Chan P (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience 145:539–555

    CAS  PubMed  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantianigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    PubMed  Google Scholar 

  • Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G, Duncan JA 3rd, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MG, Barres BA (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by University La Sapienza Roma, Ateneo 2012–2015, and Ministero della Salute, Ricerca Corrente 2019.

Author information

Authors and Affiliations

Authors

Contributions

Original draft preparation [Giorgio Vivacqua, Francesco Fornai]; animal treatments [Giorgio Vivacqua, Francesca Biagioni]; immune-histochemistry [Giorgio Vivacqua, Francesca Biagioni]; SDS Page Immune-blotting [Francesca Biagioni]; stereology [Carla L. Busceti]; anti-alpha-synuclein 2E3 and 3D5 primary antibodies set-up [Shun Yu]; data analysis [Giorgio Vivacqua, Francesca Biagioni, Carla L. Busceti, Michela Ferrucci]; animal care [Michele Madonna]; writing the paper and editing [Michela Ferrucci, Larisa Ryskalin, Loredana D’Este, Francesco Fornai]; conceptualization, intellectual content, and supervision [Francesco Fornai].

Corresponding author

Correspondence to Francesco Fornai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivacqua, G., Biagioni, F., Busceti, C.L. et al. Motor Neurons Pathology After Chronic Exposure to MPTP in Mice. Neurotox Res 37, 298–313 (2020). https://doi.org/10.1007/s12640-019-00121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00121-y

Keywords

Navigation