Advertisement

Quality Control in Huntington’s Disease: a Therapeutic Target

  • Sachchida Nand Rai
  • Brijesh Kumar Singh
  • Aaina Singh Rathore
  • Walia Zahra
  • Chetan Keswani
  • Hareram Birla
  • Saumitra Sen Singh
  • Hagera Dilnashin
  • Surya Pratap SinghEmail author
Review Article

Abstract

Huntington’s disease (HD) is a fatal autosomal dominantly inherited brain disease caused by excessively expanded CAG repeats in gene which encodes huntingtin protein. These abnormally encoded huntingtin proteins and their truncated fragments result in disruption of cellular quality mechanism ultimately triggering neuronal death. Despite great efforts, a potential causative agent leading to genetic mutation in HTT, manifesting the neurons more prone to oxidative stress, cellular inflammation, energy depletion and apoptotic death, has not been established yet. Current scenario concentrates on symptomatic pathologies to improvise the disease progression and to better the survival. Most of the therapeutic developments have been converged to rescue the protein homeostasis. In HD, abnormal expansion of glutamine repeats in the protein huntingtin leads to toxic aggregation of huntingtin which in turn impairs the quality control mechanism of cells through damaging the machineries involved in removal of aggregated abnormal protein. Therapeutic approaches to improve the efficiency of aggregate clearance through quality control mechanisms involve protein folding machineries such as chaperones and protein degradation machineries such as proteasome and autophagy. Also, to reduce protein aggregation by enhancing proper folding, to degrade and eliminate the aggregates are suggested to negatively regulate the HD progression associated with the disruption of protein homeostasis. This review focuses on the collection of therapeutic strategies targeting enhancement of protein quality control activity to delay the HD pathogenesis.

Keywords

Huntington’s disease Autophagy Cellular quality control Proteasome 

Notes

References

  1. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115.  https://doi.org/10.1146/annurev-biochem-060809-095203 CrossRefGoogle Scholar
  2. Antonioli M, Di Rienzo M, Piacentini M, Fimia GM (2017) Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci 42:28–41CrossRefGoogle Scholar
  3. Aron R, Tsvetkov A, Finkbeiner S (2013) NUB1 snubs huntingtin toxicity. Nat Neurosci.  https://doi.org/10.1038/nn.3380
  4. Arrasate M, Mitra S, Schweitzer ES, et al (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. NatureGoogle Scholar
  5. Ashkenazi A, Bento CF, Ricketts T et al (2017) Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature.  https://doi.org/10.1038/nature22078
  6. Atwal RS, Xia J, Pinchev D et al (2007) Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddm217
  7. Baldo B, Weiss A, Parker CN, Bibel M, Paganetti P, Kaupmann K (2012) A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J Biol Chem 287:1406–1414.  https://doi.org/10.1074/jbc.M111.294801 CrossRefGoogle Scholar
  8. Barbeau A, Coiteux C, Trudeau JC, Fullum G (1964) La Choree de Huntingdon chez le Canadiens. Francais, Union Medicale de Canada 93:1178Google Scholar
  9. Bauer PO, Goswami A, Wong HK et al (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol.  https://doi.org/10.1038/nbt.1608
  10. Bäuerlein FJB, Saha I, Mishra A et al (2017) In situ architecture and cellular interactions of polyQ inclusions. Cell.  https://doi.org/10.1016/j.cell.2017.08.009
  11. Becher MW, Kotzuk JA, Sharp AH et al (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis.  https://doi.org/10.1006/nbdi.1998.0168
  12. Bercovich B, Stancovski I, Mayer A et al (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem.  https://doi.org/10.1074/jbc.272.14.9002
  13. Bersuker K, Brandeis M, Kopito RR (2016) Protein misfolding specifies recruitment to cytoplasmic inclusion bodies. J Cell Biol 213:229–241.  https://doi.org/10.1083/jcb.201511024 CrossRefGoogle Scholar
  14. Bhat KP, Yan S, Wang C-E, Li S, Li XJ (2014) Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc Natl Acad Sci 111:5706–5711.  https://doi.org/10.1073/pnas.1402215111 CrossRefGoogle Scholar
  15. Birla H, Rai SN, Singh SS, Zahra W, Rawat A, Tiwari N, Singh RK, Pathak A, Singh SP (2019) Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. Neuro Molecular Medicine.  https://doi.org/10.1007/s12017-018-08521-7
  16. Bové J, Martínez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev NeurosciGoogle Scholar
  17. Bunnage ME, Chekler ELP, Jones LH (2013) Target validation using chemical probes. Nat Chem Biol 9:195–199.  https://doi.org/10.1038/nchembio.1197 CrossRefGoogle Scholar
  18. Cardinale A, Fusco FR, Paldino E, Giampà C, Marino M, Nuzzo MT, D’Angelo V, Laurenti D, Straccia G, Fasano D, Sarnataro D, Squillaro T, Paladino S, Melone MAB (2018) Localization of neuroglobin in the brain of R6/2 mouse model of Huntington’s disease. Neurol Sci 39:275–285.  https://doi.org/10.1007/s10072-017-3168-2 CrossRefGoogle Scholar
  19. Chandler JH, Reed TE, DeJong RN (2012) Huntington’s chorea in Michigan: III. Clinical observations. Neurology. 10:148.  https://doi.org/10.1212/wnl.10.2.148 CrossRefGoogle Scholar
  20. Chang DTW, Rintoul GL, Pandipati S, Reynolds IJ (2006) Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis.  https://doi.org/10.1016/j.nbd.2005.12.007
  21. Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES (2015) 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J 29:611–622.  https://doi.org/10.1096/fj.14-252189 CrossRefGoogle Scholar
  22. Collins I, Wang H, Caldwell JJ, Chopra R (2017) Chemical approaches to targeted protein degradation through modulation of the ubiquitin–proteasome pathway. Biochem J 474:1127–1147.  https://doi.org/10.1042/bcj20160762 CrossRefGoogle Scholar
  23. Cortes CJ, La Spada AR (2014) The many faces of autophagy dysfunction in Huntington’s disease: from mechanism to therapy. Drug Discov Today, 19, 963, 971Google Scholar
  24. Corti O (2019) Neuronal mitophagy: lessons from a pathway linked to Parkinson’s disease. Neurotox Res.  https://doi.org/10.1007/s12640-019-00060-8
  25. Crino PB (2016) The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 12:379–392CrossRefGoogle Scholar
  26. Culver BP et al (2012) Proteomic analysis of wild-type and mutant Huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. JBC. DOI 10.1074/jbc.M112.359307Google Scholar
  27. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154.  https://doi.org/10.1038/502 CrossRefGoogle Scholar
  28. Dantuma NP, Bott LC (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 7.  https://doi.org/10.3389/fnmol.2014.00070
  29. Davenport J, Manjarrez JR, Peterson L et al (2011) Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod.  https://doi.org/10.1021/np200029q
  30. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 90:537–548.  https://doi.org/10.1016/S0092-8674(00)80513-9 CrossRefGoogle Scholar
  31. Debnath K, Shekhar S, Kumar V, Jana NR, Jana NR (2016) Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces 8:20309–20318.  https://doi.org/10.1021/acsami.6b06853 CrossRefGoogle Scholar
  32. DiFiglia M, Sapp E, Chase K et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron.  https://doi.org/10.1016/0896-6273(95)90346-1
  33. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (80- ).  https://doi.org/10.1126/science.277.5334.1990
  34. Duyao M, Ambrose C, Myers R et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet.  https://doi.org/10.1038/ng0893-387
  35. Egan DF, Chun MGH, Vamos M et al (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell.  https://doi.org/10.1016/j.molcel.2015.05.031
  36. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566.  https://doi.org/10.1038/nsmb.1437 CrossRefGoogle Scholar
  37. Ellrichmann G, Reick C, Saft C, Linker RA (2013) The role of the immune system in Huntington’s disease. Clin Dev Immunol 2013:1–11.  https://doi.org/10.1155/2013/541259 CrossRefGoogle Scholar
  38. Faber PW, Alter JR, MacDonald ME, Hart AC (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S AGoogle Scholar
  39. Fusco FR, Anzilotti S, Giampà C, Dato C, Laurenti D, Leuti A, D’Amato LC, Perrone L, Bernardi G, Melon MAB (2012) Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2mouse model of Huntington’s disease after phosphodiesterase IV inhibition. Neurobiol Dis 46:225–233.  https://doi.org/10.1016/j.nbd.2012.01.011 CrossRefGoogle Scholar
  40. Garbaccio RM, Parmee ER (2016) The impact of chemical probes in drug discovery: a pharmaceutical industry perspective. Cell Chem BiolGoogle Scholar
  41. Gasset-Rosa F, Chillon-Marinas C, Goginashvili A et al (2017) Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron.  https://doi.org/10.1016/j.neuron.2017.03.027
  42. Giampa’ C, Montagna E, Dato C, MAB M, Bernardi G et al (2013) Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One 8:e64037.  https://doi.org/10.1371/journal.pone.0064037 CrossRefGoogle Scholar
  43. Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, Ross CA, Eroglu C, Thiele DJ (2017) Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun 8.  https://doi.org/10.1038/ncomms14405
  44. Guedes-Dias P, de Proença J, Soares TR et al (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta - Mol Basis Dis.  https://doi.org/10.1016/j.bbadis.2015.08.012
  45. Gunawardena S, Her LS, Brusch RG et al (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron.  https://doi.org/10.1016/S0896-6273(03)00594-4
  46. Harper PS (1992) The epidemiology of Huntington’s disease. Hum GenetGoogle Scholar
  47. Harris GJ, Pearlson GD, Peyser CE, Aylward EH, Roberts J, Barta PE, Chase GA, Folstein SE (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31:69–75.  https://doi.org/10.1002/ana.410310113 CrossRefGoogle Scholar
  48. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332CrossRefGoogle Scholar
  49. He WT, Xue W, Gao YG et al (2017) HSP90 recognizes the N-terminus of huntingtin involved in regulation of huntingtin aggregation by USP19. Sci Rep.  https://doi.org/10.1038/s41598-017-13711-7
  50. Hipp MS, Park SH, Hartl UU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell BiolGoogle Scholar
  51. Hjerpe R, Bett JS, Keuss MJ et al (2016) UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell.  https://doi.org/10.1016/j.cell.2016.07.001
  52. Ho GJ, Hashimoto M, Adame A, Izu M, Alford MF, Thal LJ, Hansen LA, Masliah E (2005) Altered p59Fyn kinase expression accompanies disease progression in Alzheimer’s disease: implications for its functional role. Neurobiol Aging 26:625–635.  https://doi.org/10.1016/j.neurobiolaging.2004.06.016 CrossRefGoogle Scholar
  53. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem.  https://doi.org/10.1146/annurev-biochem-061516-044820
  54. Hyrskyluoto A, Bruelle C, Lundh SH et al (2014) Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration: involvement of the proteasome and ER stress-activated kinase IRE1α. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddu317
  55. Jackrel ME, Shorter J (2011) Shock and awe: unleashing the heat shock response to treat Huntington disease. J Clin InvestGoogle Scholar
  56. Jana NR, Dikshit P, Goswami A et al (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem.  https://doi.org/10.1074/jbc.M412042200
  57. Jeon J, Kim W, Jang J et al (2016) Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington’s disease YAC128 mice. Neuroscience.  https://doi.org/10.1016/j.neuroscience.2016.02.054
  58. Jiang H, Sun YM, Hao Y et al (2014) Huntingtin gene CAG repeat numbers in Chinese patients with Huntington’s disease and controls. Eur J Neurol.  https://doi.org/10.1111/ene.12366
  59. Karagöz GE, Rüdiger SGD (2015) Hsp90 interaction with clients. Trends Biochem Sci 40:117–125CrossRefGoogle Scholar
  60. Katsuno M, Adachi H, Sobue G (2004) Sweet relief for Huntington disease. Nat Med 10:123–124.  https://doi.org/10.1038/nm0204-123 CrossRefGoogle Scholar
  61. Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat MedGoogle Scholar
  62. Kegel KB, Kim M, Sapp E, et al (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J NeurosciGoogle Scholar
  63. Khan TK, Nelson TJ (2018) Protein kinase C activator bryostatin-1 modulates proteasome function. J Cell Biochem 119:6894–6904.  https://doi.org/10.1002/jcb.26887 CrossRefGoogle Scholar
  64. Killoran A, Biglan KM, Jankovic J et al (2013) Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. Neurology.  https://doi.org/10.1212/WNL.0b013e318294b304
  65. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141.  https://doi.org/10.1038/ncb2152 CrossRefGoogle Scholar
  66. Klöppel S, Henley SM, Hobbs NZ, Wolf RC, Kassubek J, Tabrizi SJ, Frackowiak RSJ (2009) Magnetic resonance imaging of Huntington’s disease: preparing for clinical trials. Neuroscience 164:205–219CrossRefGoogle Scholar
  67. Koga H, Martinez-Vicente M, Arias E et al (2011) Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci.  https://doi.org/10.1523/jneurosci.3219-11.2011
  68. Koyuncu S, Saez I, Lee H-J, Gutierrez-Garcia R, Pokrzywa W, Fatima A, Hoppe T, Vilchez D (2018) The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington’s disease patients. Nat Commun.  https://doi.org/10.1038/s41467-018-05320-3
  69. Labbadia J, Cunliffe H, Weiss A et al (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest.  https://doi.org/10.1172/JCI57413
  70. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem.  https://doi.org/10.1146/annurev-biochem-060614-033955
  71. Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y, Richards WG, Osmand A, Paganetti P, Bates GP (2010) Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 285:8808–8823.  https://doi.org/10.1074/jbc.M109.075028 CrossRefGoogle Scholar
  72. Lazarus MB, Novotny CJ, Shokat KM (2015) Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem Biol.  https://doi.org/10.1021/cb500835z
  73. Lazarus MB, Shokat KM (2015) Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorganic Med Chem.  https://doi.org/10.1016/j.bmc.2015.07.034
  74. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 467:179–184.  https://doi.org/10.1038/nature09299 CrossRefGoogle Scholar
  75. Lee H, Noh JY, Oh Y et al (2012a) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddr445
  76. Lee JH, Tecedor L, Chen YH, Monteys AM, Sowada MJ, Thompson LM, Davidson BL (2015) Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes. Neuron. 85:303–315.  https://doi.org/10.1016/j.neuron.2014.12.019 CrossRefGoogle Scholar
  77. Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJA, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, on behalf of the PREDICT-HD study of the Huntington Study Group (HSG), Landwehrmeyer GB, on behalf of the REGISTRY study of the European Huntington's Disease Network, Myers RH, on behalf of the HD-MAPS Study Group, MacDonald ME, Gusella JF, on behalf of the COHORT study of the HSG (2012b) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 78:690–695.  https://doi.org/10.1212/WNL.0b013e318249f683 CrossRefGoogle Scholar
  78. Leestemaker Y, de Jong A, Witting KF, Penning R, Schuurman K, Rodenko B, Zaal EA, van de Kooij B, Laufer S, Heck AJR, Borst J, Scheper W, Berkers CR, Ovaa H (2017) Proteasome activation by small molecules. Cell Chem Biol 24:725–736.e7.  https://doi.org/10.1016/j.chembiol.2017.05.010 CrossRefGoogle Scholar
  79. Leuti A, Laurenti D, Giampà A, Montagna E, Dato C, Anzilotti S, Melone MAB, Bernardi G, Fusco FR (2012) Phosphodiesterase 10A (PDE10A) localization in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis.  https://doi.org/10.1016/j.nbd.2012.11.016
  80. Li W, Ye Y (2008) Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life SciGoogle Scholar
  81. Li XJ, Li S (2011) Proteasomal dysfunction in aging and Huntington disease. Neurobiol Dis 43:4–8CrossRefGoogle Scholar
  82. Li Y, Zhang T, Jiang Y, et al (2009) (−)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line mia paca-2. Mol Pharm. doi:  https://doi.org/10.1021/mp900037p
  83. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795CrossRefGoogle Scholar
  84. Lu B, Al-Ramahi I, Valencia A et al (2013) Identification of NUB1 as a suppressor of mutant Huntingtin toxicity via enhanced protein clearance. Nat Neurosci.  https://doi.org/10.1038/nn.3367
  85. Maheshwari M, Shekhar S, Singh BK u et al (2014a) Deficiency of Ube3a in Huntington’s disease mice brain increases aggregate load and accelerates disease pathology. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddu343
  86. Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, Nukina N, Jana NR (2014b) Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum Mol Genet 23:2737–2751.  https://doi.org/10.1093/hmg/ddt667 CrossRefGoogle Scholar
  87. Margulis J, Finkbeiner S (2014) Proteostasis in striatal cells and selective neurodegeneration in Huntington’s disease. Front Cell Neurosci.  https://doi.org/10.3389/fncel.2014.00218
  88. Marsh JL, Thompson LM (2006) Drosophila in the study of neurodegenerative disease. Neuron 52:169–178CrossRefGoogle Scholar
  89. Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends NeurosciGoogle Scholar
  90. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576.  https://doi.org/10.1038/nn.2528 CrossRefGoogle Scholar
  91. McKinnon C, Goold R, Andre R, Devoy A, Ortega Z, Moonga J, Linehan JM, Brandner S, Lucas JJ, Collinge J, Tabrizi SJ (2016) Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin–proteasome system. Acta Neuropathol 131:411–425.  https://doi.org/10.1007/s00401-015-1508-y CrossRefGoogle Scholar
  92. McKinnon C, Tabrizi SJ (2014) The ubiquitin-proteasome system in neurodegeneration. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2013.5802
  93. Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev NeurosciGoogle Scholar
  94. Menzies FM, Moreau K, Rubinsztein DC (2011) Protein misfolding disorders and macroautophagy. Curr Opin Cell BiolGoogle Scholar
  95. Messer A (2005) Huntington’s chorea. By Michael R. Hayden, Springer-Verlag New York, Inc., 192 pp., 69 figs., 1981, $47.00. Am J Med Genet. doi: 10.1002/ajmg.1320160221Google Scholar
  96. Mielcarek M, Zielonka D, Carnemolla A, Marcinkowski JT, Guidez F (2015) HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front Cell Neurosci.  https://doi.org/10.3389/fncel.2015.00042
  97. Miller VM (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci.  https://doi.org/10.1523/JNEUROSCI.3001-05.2005
  98. Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719CrossRefGoogle Scholar
  99. Mitra S, Tsvetkov AS, Finkbeiner S (2009) Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in Huntington disease. J Biol Chem 284:4398–4403.  https://doi.org/10.1074/jbc.M806269200 CrossRefGoogle Scholar
  100. Nelson VK, Ali A, Dutta N, Ghosh S, Jana M, Ganguli A, Komarov A, Paul S, Dwivedi V, Chatterjee S, Jana NR, Lakhotia SC, Chakrabarti G, Misra AK, Mandal SC, Pal M (2016) Azadiradione ameliorates polyglutamine expansion disease in Drosophila by potentiating DNA binding activity of heat shock factor 1. Oncotarget. 7.  https://doi.org/10.18632/oncotarget.12930
  101. Neueder A, Gipson TA, Batterton S et al (2017) HSF1-dependent and-independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington’s disease mouse models. Sci Rep.  https://doi.org/10.1038/s41598-017-12897-0
  102. Nillegoda NB, Wentink AS, Bukau B (2018) Protein disaggregation in multicellular organisms. Trends Biochem Sci 43:285–300CrossRefGoogle Scholar
  103. Ochaba J, Lukacsovich T, Csikos G et al (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1420103111
  104. Palermo CM, Westlake CA, Gasiewicz TA (2005) Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry. 44:5041–5052.  https://doi.org/10.1021/bi047433p CrossRefGoogle Scholar
  105. Park SH, Kukushkin Y, Gupta R et al (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell.  https://doi.org/10.1016/j.cell.2013.06.003
  106. Parker JA, Connolly JB, Wellington C et al (2002) Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.231476398
  107. Petersen A (2002) Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet.  https://doi.org/10.1093/hmg/10.12.1243
  108. Petherick KJ, Conway OJL, Mpamhanga C et al (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem.  https://doi.org/10.1074/jbc.C114.627778
  109. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2014) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol.  https://doi.org/10.1146/annurev-pharmtox-010814-124332
  110. Pringsheim T, Wiltshire K, Day L, et al (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov DisordGoogle Scholar
  111. Qi L, Zhang XD, Wu JC, Lin F, Wang J, DiFiglia M, Qin ZH (2012) The role of chaperone-mediated autophagy in Huntingtin degradation. PLoS One 7:e46834.  https://doi.org/10.1371/journal.pone.0046834 CrossRefGoogle Scholar
  112. Quarrell OWJ, Tyler A, Jones MP, Nordin M, Harper PS (1988) Population studies of Huntington’s disease in Wales. Clin Genet 33:189–195.  https://doi.org/10.1111/j.1399-0004.1988.tb03436.x CrossRefGoogle Scholar
  113. Rai SN, Birla H, Zahra W, Singh SN, Singh SP (2017a) Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). J Chem Neuroanat 85:27–35.  https://doi.org/10.1016/j.jchemneu.2017.06.005 CrossRefGoogle Scholar
  114. Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP (2019a) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35:775–795.  https://doi.org/10.1007/s12640-019-0003-y CrossRefGoogle Scholar
  115. Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, Gedda MR, Singh SP (2017b) Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/p-Akt1 signaling pathways. Front Aging Neurosci.  https://doi.org/10.3389/fnagi.2017.00421
  116. Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, Rathore AS, Singh R, Singh RK, Singh SP (2019b) Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res.  https://doi.org/10.1007/s12640-019-00038-6
  117. Ramdzan YM, Trubetskov MM, Ormsby AR et al (2017) Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep.  https://doi.org/10.1016/j.celrep.2017.04.029
  118. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595.  https://doi.org/10.1038/ng1362 CrossRefGoogle Scholar
  119. Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, Lindholm D, Korhonen L (2010) Downregulation of NF-κB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cell and Mol Life Sci 67:1929–1941.  https://doi.org/10.1007/s00018-010-0305-y CrossRefGoogle Scholar
  120. Reis SD, Pinho BR, Oliveira JMA (2017) Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders. Mol Neurobiol 54:5829–5854CrossRefGoogle Scholar
  121. Rubio I, Rodríguez-Navarro JA, Tomás-Zapico C et al (2009) Effects of partial suppression of parkin on huntingtin mutant R6/1 mice. Brain Res.  https://doi.org/10.1016/j.brainres.2009.05.039
  122. Rui YN, Xu Z, Patel B, Chen Z, Chen D, Tito A, David G, Sun Y, Stimming EF, Bellen HJ, Cuervo AM, Zhang S (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17:262–275.  https://doi.org/10.1038/ncb3101 CrossRefGoogle Scholar
  123. Seidel K, Siswanto S, Fredrich M, Bouzrou M, Brunt ER, van Leeuwen FW, Kampinga HH, Korf HW, Rüb U, den Dunnen WFA (2016) Polyglutamine aggregation in Huntington’s disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation. Neuropathol Appl Neurobiol 42:153–166.  https://doi.org/10.1111/nan.12253 CrossRefGoogle Scholar
  124. Seo H, Sonntag KC, Kim W et al (2007) Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS One.  https://doi.org/10.1371/journal.pone.0000238
  125. Shekhar S, Vatsa N, Kumar V, Singh BK, Jamal I, Sharma A, Ranjan Jana N (2017) Topoisomerase 1 inhibitor topotecan delays the disease progression in a mouse model of Huntington’s disease. Hum Mol Genet:ddw398.  https://doi.org/10.1093/hmg/ddw398
  126. Shokeir MHK (1975) Investigations on Huntington’s disease in the Canadian prairies: I. Prevalence. Clin Genet doi 7:345–348.  https://doi.org/10.1111/j.1399-0004.1975.tb00340.x CrossRefGoogle Scholar
  127. Shpilka T, Elazar Z (2011) Shedding light on mammalian microautophagy. Dev CellGoogle Scholar
  128. Sieradzan KA, Mechan AO, Jones L, Wanker EE, Nukina N, Mann DMA (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156:92–99.  https://doi.org/10.1006/exnr.1998.7005 CrossRefGoogle Scholar
  129. Simpson SA, Johnston AW (1989) The prevalence and patterns of care of Huntington’s chorea in Grampian. Br J PsychiatryGoogle Scholar
  130. Singh BK, Vatsa N, Nelson VK, Kumar V, Kumar SS, Mandal SC, Pal M, Jana NR (2018) Azadiradione restores protein quality control and ameliorates the disease pathogenesis in a mouse model of Huntington’s disease. Mol Neurobiol 55:6337–6346.  https://doi.org/10.1007/s12035-017-0853-3 CrossRefGoogle Scholar
  131. Squillaro T, Schettino C, Sampaolo S, Galderisi U, Di Iorio G, Giordano A, Melone MAB (2018) Adult-onset brain tumors and neurodegeneration: are polyphenols protective? J Cell Physiol 233:3955–3967.  https://doi.org/10.1002/jcp.26170 CrossRefGoogle Scholar
  132. Stevenson CS (1934) A biography of George Huntington, M.D. Bulletin of the History of Medicine. Johns Hopkins University. II(2). Archived from the original (DOC) on March 15, 2009Google Scholar
  133. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154.  https://doi.org/10.1038/nm985 CrossRefGoogle Scholar
  134. The American College of Medical Genetics/American Society of Human Genetics Huntington Disease Genetic Testing Working Group (1998) ACMG/ASHG statement. Laboratory guidelines for Huntington disease genetic testing. Am J Hum Genet 62:1243–1247CrossRefGoogle Scholar
  135. Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O'Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187:1083–1099.  https://doi.org/10.1083/jcb.200909067 CrossRefGoogle Scholar
  136. Toczek M, Zielonka D, Zukowska P, Marcinkowski JT, Slominska E, Isalan M, Smolenski RT, Mielcarek M (2016) An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington’s disease related cardiomyopathy. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbadis.2016.08.019
  137. Tripathi MK, Rajput C, Mishra S et al (2019) Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: feats, constraints, and flaws of modulators. Neurotox Res 35:260.  https://doi.org/10.1007/s12640-018-9917-z CrossRefGoogle Scholar
  138. Tsvetkov AS, Miller J, Arrasate M et al (2010) A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1004498107
  139. Van Raamsdonk JM, Murphy Z, Slow EJ et al (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddi407
  140. Velichko AK, Markova EN, Petrova NV et al (2013) Mechanisms of heat shock response in mammals. Cell Mol Life SciGoogle Scholar
  141. VerPlank JJS, Goldberg AL (2017) Regulating protein breakdown through proteasome phosphorylation. Biochem J.  https://doi.org/10.1042/bcj20160809
  142. Vidoni C, Secomandi E, Castiglioni A, Melone MAB, Isidoro C (2017) Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int.  https://doi.org/10.1016/j.neuint.2017.05.013
  143. Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C (2016) Dopamine exacerbates mutant huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH SY5Y neuroblastoma cells: beneficial effects of anti-oxidant therapeutics. Neurochem Int 101:132–143.  https://doi.org/10.1016/j.neuint.2016.11.003 CrossRefGoogle Scholar
  144. Vingtdeux V, Chandakkar P, Zhao H et al (2010) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J.  https://doi.org/10.1096/fj.10-167361
  145. Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:55–69CrossRefGoogle Scholar
  146. Walker FO (2013) Huntington’s disease: the road to progress. Lancet Neurol.  https://doi.org/10.1016/s1474-4422(13)70105-4
  147. Walter C, Clemens LE, Müller AJ et al (2016) Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2016.04.041
  148. Warby SC, Montpetit A, Hayden AR, Carroll JB, Butland SL, Visscher H, Collins JA, Semaka A, Hudson TJ, Hayden MR (2009) CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing Haplogroup. Am J Hum Genet 84:351–366.  https://doi.org/10.1016/j.ajhg.2009.02.003 CrossRefGoogle Scholar
  149. Westerheide SD, Anckar J, Stevens SM, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT. Science (80- ). 323:1063–1066.  https://doi.org/10.1126/science.1165946 CrossRefGoogle Scholar
  150. Wold MS, Lim J, Lachance V et al (2016) ULK1-mediated phosphorylation of ATG14 promotes autophagy and is impaired in Huntington’s disease models. Mol Neurodegener.  https://doi.org/10.1186/s13024-016-0141-0
  151. Wong YC, Holzbaur ELF (2015) Autophagosome dynamics in neurodegeneration at a glance. J Cell Sci.  https://doi.org/10.1242/jcs.161216
  152. Wong YC, Holzbaur ELF (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305.  https://doi.org/10.1523/jneurosci.1870-13.2014 CrossRefGoogle Scholar
  153. Wyttenbach A, Carmichael J, Swartz J, et al (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci U S AGoogle Scholar
  154. Xu YM, Huang DY, Chiu JF, Lau ATY (2012) Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J Proteome Res 11:2625–2634CrossRefGoogle Scholar
  155. Yadav SK, Rai SN, Singh SP (2017) Mp reduces inducible nitric oxide synthase expression in parkinsonian mice model. J Chem Neuroanat 80:1–10CrossRefGoogle Scholar
  156. Yamanaka T, Miyazaki H, Oyama F et al (2008) Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J.  https://doi.org/10.1038/emboj.2008.23
  157. Yang J, Hao X, Cao X et al (2016) Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. Elife.  https://doi.org/10.7554/elife.11792
  158. Yu A, Shibata Y, Shah B, Calamini B, Lo DC, Morimoto RI (2014) Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc Natl Acad Sci 111:E1481–E1490.  https://doi.org/10.1073/pnas.1321811111 CrossRefGoogle Scholar
  159. Zhang L, Fu L, Zhang S, Zhang J, Zhao Y, Zheng Y, He G, Yang S, Ouyang L, Liu B (2017) Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem Sci 8:2687–2701.  https://doi.org/10.1039/C6SC05368H CrossRefGoogle Scholar
  160. Zhang YQ, Sarge KD (2007) Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med 85:1421–1428.  https://doi.org/10.1007/s00109-007-0251-9 CrossRefGoogle Scholar
  161. Zhao T, Hong Y, Li S, Li X-J (2016) Compartment-dependent degradation of mutant huntingtin accounts for its preferential accumulation in neuronal processes. J Neurosci 36:8317–8328.  https://doi.org/10.1523/jneurosci.0806-16.2016 CrossRefGoogle Scholar
  162. Zheng J, Yang J, Choe YJ, Hao X, Cao X, Zhao Q, Zhang Y, Franssens V, Hartl FU, Nyström T, Winderickx J, Liu B (2017) Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochem Biophys Res Commun 493:708–717.  https://doi.org/10.1016/j.bbrc.2017.08.126 CrossRefGoogle Scholar
  163. Zheng S, Clabough EBD, Sarkar S et al (2010) Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1000838
  164. Zielonka D, Ren M, De Michele G, Roos RAC, Squitieri F, Bentivoglio AR, Marcinkowski JT, Landwehrmeyer GB (2018) The contribution of gender differences in motor, behavioral and cognitive features to functional capacity, independence and quality of life in patients with Huntington’s disease. Parkinsonism Relat Disord.  https://doi.org/10.1016/j.parkreldis.2018.01.006

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sachchida Nand Rai
    • 1
  • Brijesh Kumar Singh
    • 2
  • Aaina Singh Rathore
    • 1
  • Walia Zahra
    • 1
  • Chetan Keswani
    • 1
  • Hareram Birla
    • 1
  • Saumitra Sen Singh
    • 1
  • Hagera Dilnashin
    • 1
  • Surya Pratap Singh
    • 1
    Email author
  1. 1.Department of Biochemistry, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Pathology and Cell BiologyColumbia University Medical Centre, Columbia UniversityNew YorkUSA

Personalised recommendations