Advertisement

Neurotoxicity Research

, Volume 36, Issue 3, pp 627–644 | Cite as

Unequivocal Biomarker for Parkinson’s Disease: A Hunt that Remains a Pester

  • Alika Sarkar
  • Neeraj Rawat
  • Nidhi Sachan
  • Mahendra Pratap SinghEmail author
Review

Abstract

Devastating motor features, lack of early prognostic tools, and absence of undeviating therapies call for an endeavor to develop biomarkers for Parkinson’s disease (PD). A biomarker is anticipated to help in timely and selective diagnosis as well as to hunt for an appropriate treatment option. Peripheral fingerprints can be used to assess the progression, distinguish PD from other related disorders, and monitor the efficacy of therapeutic options. From the last two decades, peripheral blood is constantly targeted in search of an appropriate marker owing to minimal invasive procedure for collection, highly dynamic nature, and insignificant ethical concern. Besides, cerebrospinal fluid (CSF) is also preferred because of its close proximity to the brain. Employing conventional and contemporary sophisticated devices, a number of protein and non-protein entities, mainly metallic elements, have been shown to hold adequate potential to be used as biomarkers for monitoring progression and assessing treatment options for such a distressing neurodegenerative disorder. Classical strategies and relatively newer sophisticated tools, such as proteomics, deciphered the presence of an altered level of highly specific blood- and CSF-specific proteins, free metals, metal-binding proteins, common inflammatory proteins, and overexpressed/modified α-synuclein in PD patients. While several chemical entities are shown to be associated, not even a single protein or metal is converted into unambiguous disease fingerprint. The article provides an update on proteins and metals that are shown to possess enormous potential in the course of biomarker exploration but are unable to deliver a reliable indicator. The review also sheds light on the reasons of ineffective hit to hunt for an authentic fingerprint and proposes the doable ways to translate the output into reality.

Keywords

Parkinson’s disease Biomarkers Proteins Metals 

Notes

Acknowledgments

The Department of Biotechnology, India, provided junior research fellowship to Alika Sarkar and Council of Scientific and Industrial Research, India, to Neeraj Rawat. Authors sincerely acknowledged the abovementioned agencies. The CSIR-IITR communication number of the article is 3587.

Authors’ Contribution

The idea was conceived by Mahendra Pratap Singh Alika Sarkar, Neeraj Rawat and Nidhi Sachan collected the information. Alika Sarkar and Neeraj Rawat wrote the initial draft of manuscript. Nidhi Sachan and Alika Sarkar contributed in making the figure. Mahendra Pratap Singh comprehensively revised the manuscript. All authors have seen and finalized the manuscript and concur with its content.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Aguilar MV, Jiménez-Jiménez FJ, Molina JA, Meseguer I, Mateos-Vega CJ, González-Muñoz MJ, de Bustos F, Gómez-Escalonilla C, Ort-Pareja M, Zurdo M, Martínez-Para MC (1998) Cerebrospinal fluid selenium and chromium levels in patients with Parkinson’s disease. J Neural Transm (Vienna) 105(10–12):1245–1251.  https://doi.org/10.1007/s007020050127 Google Scholar
  2. Alberio T, Bucci EM, Natale M, Bonino D, Di Giovanni M, Bottacchi E, Fasano M (2013) Parkinson’s disease plasma biomarkers: an automated literature analysis followed by experimental validation. J Proteome 90:107–114.  https://doi.org/10.1016/j.jprot.2013.01.025 Google Scholar
  3. Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 64(10):846–852.  https://doi.org/10.1002/iub.1073 Google Scholar
  4. Alimonti A, Bocca B, Pino A, Ruggieri F, Forte G, Sancesario G (2007) Elemental profile of cerebrospinal fluid in patients with Parkinson’s disease. J Trace Elem Med Biol 21(4):234–241.  https://doi.org/10.1016/j.jtemb.2007.05.001 Google Scholar
  5. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26(3):410–418.  https://doi.org/10.1111/bpa.12370 Google Scholar
  6. Ba M, Yu G, Kong M, Liang H, Yu L (2018) CSF Aβ1-42 level is associated with cognitive decline in early Parkinson’s disease with rapid eye movement sleep behavior disorder. Transl Neurodegener 7:22.  https://doi.org/10.1186/s40035-018-0129-5 Google Scholar
  7. Bagheri V, Khorramdelazad H, Hassanshahi G, Moghadam-Ahmadi A, Vakilian A (2018) CXCL12 and CXCR4 in the peripheral blood of patients with Parkinson’s disease. Neuroimmunomodulation 25(4):201–205.  https://doi.org/10.1159/000494435 Google Scholar
  8. Barbariga M, Curnis F, Andolfo A, Zanardi A, Lazzaro M, Conti A, Magnani G, Volontè MA, Ferrari L, Comi G, Corti A, Alessio M (2015) Ceruloplasmin functional changes in Parkinson’s disease-cerebrospinal fluid. Mol Neurodegener 10:59.  https://doi.org/10.1186/s13024-015-0055-2 Google Scholar
  9. Barkovits K, Helling S, Marcus K (2015) MS-based methods for biomarkers of Parkinson’s disease: what is the future? Bioanalysis 7(2):149–151.  https://doi.org/10.4155/bio.14.273 Google Scholar
  10. Björkhem I, Patra K, Boxer AL, Svenningsson P (2018) 24S-hydroxycholesterol correlates with tau and is increased in cerebrospinal fluid in Parkinson’s disease and corticobasal syndrome. Front Neurol 9:756.  https://doi.org/10.3389/fneur.2018.00756 Google Scholar
  11. Bocca B, Alimonti A, Senofonte O, Pino A, Violante N, Petrucci F, Sancesario G, Forte G (2006) Metal changes in CSF and peripheral compartments of parkinsonian patients. J Neurol Sci 248(1–2):23–30.  https://doi.org/10.1016/j.jns.2006.05.007 Google Scholar
  12. Boll MC, Alcaraz-Zubeldia M, Montes S, Rios C (2008) Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem Res 33(9):1717–1723.  https://doi.org/10.1007/s11064-008-9610-3 Google Scholar
  13. Boll MC, Sotelo J, Otero E, Alcaraz-Zubeldia M, Rios C (1999) Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease. Neurosci Lett 265(3):155–158.  https://doi.org/10.1016/S0304-3940(99)00221-9 Google Scholar
  14. Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J (2010) Using ‘omics’ to define pathogenesis and biomarkers of Parkinson’s disease. Expert Rev Neurother 10(6):925–942.  https://doi.org/10.1586/ern.10.54 Google Scholar
  15. Chahine LM, Beach TG, Seedorff N, Caspell-Garcia C, Coffey CS, Brumm M, Adler CH, Serrano GE, Linder C, Mosovsky S, Foroud T, Riss H, Ecklund D, Seibyl J, Jennings D, Arnedo V, Riley L, Dave KD, Mollenhauer B (2018) Feasibility and safety of multicenter tissue and biofluid sampling for α-synuclein in Parkinson’s disease: the systemic synuclein sampling study (S4). J Park Dis 8(4):517–527.  https://doi.org/10.3233/JPD-181434 Google Scholar
  16. Chahine ML, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 20(01):S99–S103.  https://doi.org/10.1016/S1353-8020(13)70025-7
  17. Chen HM, Lin CY, Wang V (2011) Amyloid P component as a plasma marker for Parkinson’s disease identified by a proteomic approach. Clin Biochem 44(5–6):377–385.  https://doi.org/10.1016/j.clinbiochem.2011.01.002 Google Scholar
  18. Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, Zappia M, Nicoletti A (2017) Metals and neurodegenerative diseases. A systematic review. Environ Res 159:82–94.  https://doi.org/10.1016/j.envres.2017.07.048 Google Scholar
  19. Constantinescu R, Blennow K, Rosengren L, Eriksson B, Gudmundsdottir T, Jansson Y, Johnels B, Renck A, Bergquist F (2018) Cerebrospinal fluid protein markers in PD patients after DBS-STN surgery-a retrospective analysis of patients that underwent surgery between 1993 and 2001. Clin Neurol Neurosurg 174:174–179.  https://doi.org/10.1016/j.clineuro.2018.09.024 Google Scholar
  20. Constantinescu R, Mondello S (2013) Cerebrospinal fluid biomarker candidates for parkinsonian disorders. Front Neurol 3:187.  https://doi.org/10.3389/fneur.2012.00187 Google Scholar
  21. Delenclos M, Jones DR, McLean PJ, Uitti RJ (2016) Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord 22(S1):S106–S110.  https://doi.org/10.1016/j.parkreldis.2015.09.048 Google Scholar
  22. Dong MX, Feng X, Xu XM, Hu L, Liu Y, Jia SY, Li B, Chen W, Wei YD (2018) Integrated analysis reveals altered lipid and glucose metabolism and identifies NOTCH2 as a biomarker for Parkinson’s disease related depression. Front Mol Neurosci 11:257.  https://doi.org/10.3389/fnmol.2018.00257 Google Scholar
  23. Dos Santos MC, Scheller D, Schulte C, Mesa IR, Colman P, Bujac SR, Bell R, Berteau C, Perez LT, Lachmann I, Berg D, Maetzler W, Nogueira da Costa A (2018) Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson’s disease diagnosis. PLoS One 13(11):e0206536.  https://doi.org/10.1371/journal.pone.0206536 Google Scholar
  24. Dunckley T, Coon KD, Stephan DA (2005) Discovery and development of biomarkers of neurological disease. Drug Discov Today 10(5):326–334.  https://doi.org/10.1016/S1359-6446(04)03353-7 Google Scholar
  25. Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612.  https://doi.org/10.3389/fnins.2018.00612 Google Scholar
  26. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851.  https://doi.org/10.1523/JNEUROSCI.5699-09.2010 Google Scholar
  27. Fairfoul G, McGuire LI, Pal S, Ironside JW, Neumann J, Christie S, Joachim C, Esiri M, Evetts SG, Rolinski M, Baig F, Ruffmann C, Wade-Martins R, Hu MT, Parkkinen L, Green AJ (2016) Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol 3(10):812–818.  https://doi.org/10.1002/acn3.338 Google Scholar
  28. Farotti L, Paciotti S, Tasegian A, Eusebi P, Parnetti L (2017) Discovery, validation and optimization of cerebrospinal fluid biomarkers for use in Parkinson’s disease. Expert Rev Mol Diagn 17(8):771–780.  https://doi.org/10.1080/14737159.2017.1341312 Google Scholar
  29. Fasano M, Alberio T, Colapinto M, Mila S, Lopiano L (2008) Proteomics as a tool to investigate cell models for dopamine toxicity. Parkinsonism Relat Disord 14(S2):S135–S138.  https://doi.org/10.1016/j.parkreldis.2008.04.016 Google Scholar
  30. Forte G, Bocca B, Senofonte O, Petrucci F, Brusa L, Stanzione P, Zannino S, Violante N, Alimonti A, Sancesario G (2004) Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm (Vienna) 111(8):1031–1040.  https://doi.org/10.1007/s00702-004-0124-0 Google Scholar
  31. Frasier M, Chowdhury S, Eberling J, Sherer T (2010) Biomarkers in Parkinson’s disease: a funder’s perspective. Biomark Med 4(5):723–729.  https://doi.org/10.2217/bmm.10.89 Google Scholar
  32. Frasier M, Kang UJ (2014) Parkinson’s disease biomarkers: resources for discovery and validation. Neuropsychopharmacology 39(1):241–242.  https://doi.org/10.1038/npp.2013.246 Google Scholar
  33. Grolez G, Moreau C, Sablonnière B, Garçon G, Devedjian JC, Meguig S, Gelé P, Delmaire C, Bordet R, Defebvre L, Cabantchik IZ, Devos D (2015) Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease. BMC Neurol 15:74.  https://doi.org/10.1186/s12883-015-0331-3 Google Scholar
  34. Hall S, Janelidze S, Surova Y, Widner H, Zetterberg H, Hansson O (2018) Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci Rep 8(1):13276.  https://doi.org/10.1038/s41598-018-31517-z Google Scholar
  35. Henchcliffe C, Shungu DC, Mao X, Huang C, Nirenberg MJ, Jenkins BG (2008) Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease. Ann N Y Acad Sci 1147:206–220.  https://doi.org/10.1196/annals.1427.037 Google Scholar
  36. Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, Yamada M, Koumura A, Sakurai T, Kimura A, Tanaka Y, Satoh M, Inuzuka T (2011) Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 303(1–2):95–99.  https://doi.org/10.1016/j.jns.2011.01.003 Google Scholar
  37. Hu X, Yang Y, Gong D (2017) Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson’s disease: a meta-analysis. Neurol Sci 38(3):407–414.  https://doi.org/10.1007/s10072-016-2783-7 Google Scholar
  38. Hu Y, Yu SY, Zuo LJ, Piao YS, Cao CJ, Wang F, Chen ZJ, Du Y, Lian TH, Liu GF, Wang YJ, Chan P, Chen SD, Wang XM, Zhang W (2015) Investigation on abnormal iron metabolism and related inflammation in Parkinson disease patients with probable RBD. PLoS One 10(10):e0138997.  https://doi.org/10.1371/journal.pone.0138997 Google Scholar
  39. Junqueira SC, Centeno EG, Wilkinson KA, Cimarosti H (2018) Post-translational modifications of Parkinson’s disease-related proteins: phosphorylation, SUMOylation and ubiquitination. Biochim Biophys Acta Mol Basis Dis pii S0925-4439(18):30426–30425.  https://doi.org/10.1016/j.bbadis.2018.10.025 Google Scholar
  40. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, Waligórska T, Taylor P, Pan S, Frasier M, Marek K (2013) Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 70(10):1277–1287.  https://doi.org/10.1001/jamaneurol.2013.3861 Google Scholar
  41. Kang UJ, Boehme AK, Fairfoul G, Shahnawaz M, Ma TC, Hutten SJ, Green A, Soto C (2019) Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov Disord 34(4):536–544.  https://doi.org/10.1002/mds.27646 Google Scholar
  42. Keeney JT, Swomley AM, Förster S, Harris JL, Sultana R, Butterfield DA (2013) Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration. Proteomics Clin Appl 7(1–2):109–122.  https://doi.org/10.1002/prca.201200087 Google Scholar
  43. Kiebish MA, Narain NR (2019) Enabling biomarker discovery in Parkinson’s disease using multiomics: challenges, promise and the future. Perinat Med 16(1):5–7.  https://doi.org/10.2217/pme-2018-0115 Google Scholar
  44. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, Itoyama Y (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9:244–248.  https://doi.org/10.1006/nbdi.2002.0466 Google Scholar
  45. Kim R, Lee J, Kim HJ, Kim A, Jang M, Jeon B, Kang UJ (2019) CSF β-amyloid42 and risk of freezing of gait in early Parkinson disease. Neurology 92(1):e40–e47.  https://doi.org/10.1212/WNL.0000000000006692 Google Scholar
  46. Kitamura Y, Kojima M, Kurosawa T, Sasaki R, Ichihara S, Hiraku Y, Tomimoto H, Murata M, Oikawa S (2018) Proteomic profiling of exosomal proteins for blood-based biomarkers in Parkinson’s disease. Neuroscience 392:121–128.  https://doi.org/10.1016/j.neuroscience.2018.09.017 Google Scholar
  47. Lamontagne-Proulx J, St-Amour I, Labib R, Pilon J, Denis HL, Cloutier N, Roux-Dalvai F, Vincent AT, Mason SL, Duchez AC, Droit A, Lacroix S, Dupré N, Langlois M, Chouinard S, Panisset M, Barker RA, Boilard E, Cicchetti F (2019) Portrait of blood-derived extracellular vesicles in patients with Parkinson’s disease. Neurobiol Dis 124:163–175.  https://doi.org/10.1016/j.nbd.2018.11.002 Google Scholar
  48. Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, Jellinger KA, Engelborghs S, Ramirez A, Parnetti L, Jack CR Jr (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the consensus of the task force on biological markers in psychiatry of the world federation of societies of biological psychiatry. World J Biol Psychiatry 19(4):244–328.  https://doi.org/10.1080/15622975.2017.1375556 Google Scholar
  49. Li T, Yang Z, Li S, Cheng C, Shen B, Le W (2018) Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: combined biomarkers for Parkinson’s disease. Front Aging Neurosci 10:392.  https://doi.org/10.3389/fnagi.2018.00392 Google Scholar
  50. Li YH, Wang J, Zheng XL, Zhang YL, Li X, Yu S, He X, Chan P (2011) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with magnetic beads for detecting serum protein biomarkers in Parkinson’s disease. Eur Neurol 65(2):105–111.  https://doi.org/10.1159/000323427 Google Scholar
  51. Licker V, Burkhard PR (2014) Proteomics as a new paradigm to tackle Parkinson’s disease research challenges. Transl Proteomics 4:1–7.  https://doi.org/10.1016/j.trprot.2014.08.001 Google Scholar
  52. Maass F, Schulz I, Lingor P, Mollenhauer B, Bähr M (2018) Cerebrospinal fluid biomarker for Parkinson’s disease: an overview. Mol Cell Neurosci.  https://doi.org/10.1016/j.mcn.2018.12.005
  53. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188.  https://doi.org/10.1602/neurorx.1.2.182 Google Scholar
  54. Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, Patnaik S, Sidransky E, Marugan JJ, Sue CM, Krainc D (2016) Activation of β-glucocerebrosidase reduces pathological α-synuclein and restores lysosomal function in Parkinson’s patient midbrain neurons. J Neurosci 36(29):7693–7706.  https://doi.org/10.1523/JNEUROSCI.0628-16.2016 Google Scholar
  55. Mila S, Albo AG, Corpillo D, Giraudo S, Zibetti M, Bucci EM, Lopiano L, Fasano M (2009) Lymphocyte proteomics of Parkinson’s disease patients reveals cytoskeletal protein dysregulation and oxidative stress. Biomark Med 3(2):117–128.  https://doi.org/10.2217/bmm.09.4 Google Scholar
  56. Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: present and future. Metablosim 64(3):S40–S46.  https://doi.org/10.1016/j.metabol.2014.10.030 Google Scholar
  57. Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP (2018) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33(2):377–387.  https://doi.org/10.1007/s12640-017-9800-3 Google Scholar
  58. Mollenhauer B, Zhang J (2012) Biochemical premotor biomarkers for Parkinson’s disease. Mov Disord 27(5):644–650.  https://doi.org/10.1002/mds.24956 Google Scholar
  59. Nafee AM, Pasha HF, El Aal SM, Mostafa NA (2012) Clinical significance of serum clusterin as a biomarker for evaluating diagnosis and metastasis potential of viral-related hepatocellular carcinoma. Clin Biochem 45(13–14):1070–1074.  https://doi.org/10.1016/j.clinbiochem.2012.04.024 Google Scholar
  60. Nischwitz V, Berthele A, Michalke B (2008) Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal Chim Acta 627(2):258–269.  https://doi.org/10.1016/j.aca.2008.08.018 Google Scholar
  61. Oeckl P, Metzger F, Nagl M, von Arnim CA, Halbgebauer S, Steinacker P, Ludolph AC, Otto M (2016) Alpha-, beta-, and gamma-synuclein quantification in cerebrospinal fluid by multiple reaction monitoring reveals increased concentrations in Alzheimer’s and Creutzfeldt-Jakob disease but no alteration in synucleinopathies. Mol Cell Proteomics 15(10):3126–3138.  https://doi.org/10.1074/mcp.M116.059915 Google Scholar
  62. Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M, Codazzi F, Pelizzoni I, Magnani G, Pesca M, Franciotta D, Cappa SF, Alessio M (2011) Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 31(50):18568–18577.  https://doi.org/10.1523/JNEUROSCI.3768-11.2011 Google Scholar
  63. Parnetti L, Chiasserini D, Persichetti E, Eusebi P, Varghese S, Qureshi MM, Dardis A, Deganuto M, De Carlo C, Castrioto A, Balducci C, Paciotti S, Tambasco N, Bembi B, Bonanni L, Onofrj M, Rossi A, Beccari T, El-Agnaf O, Calabresi P (2014) Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov Disord 29(8):1019–1027.  https://doi.org/10.1002/mds.25772 Google Scholar
  64. Parnetti L, Paciotti S, Eusebi P, Dardis A, Zampieri S, Chiasserini D, Tasegian A, Tambasco N, Bembi B, Calabresi P, Beccari T (2017) Cerebrospinal fluid β-glucocerebrosidase activity is reduced in Parkinson’s disease patients. Mov Disord 32(10):1423–1431.  https://doi.org/10.1002/mds.27136 Google Scholar
  65. Polimeno L, Asabella AN, Mazzocca A, De Fazio G, Polimeno R, Buquicchio R, Lavelli V, Rubini G (2018) Plasma levels of clusterin are representative of the early phase of the neurodegenerative process in Parkinson’s disease. J Clin Mol Med 1(1):1–5.  https://doi.org/10.15761/JCMM.1000102 Google Scholar
  66. Qureshi GA, Qureshi AA, Memon SA, Parvez SH (2006) Impact of selenium, iron, copper and zinc in on/off Parkinson’s patients on L-dopa therapy. J Neural Transm Suppl 71:229–236.  https://doi.org/10.1007/978-3-211-33328-0-24 Google Scholar
  67. Ravid R, Park YM (2014) Brain banking in the twenty-first century: creative solutions and ongoing challenges. J Bioreposit Sci Appl Med 2:17–27.  https://doi.org/10.2147/BSAM.S46571 Google Scholar
  68. Santiago JA, Bottero V, Potashkin JA (2018) Evaluation of RNA blood biomarkers in the Parkinson’s disease biomarkers program. Front Aging Neurosci 10:157.  https://doi.org/10.3389/fnagi.2018.00157 Google Scholar
  69. Sanyal J, Ahmed SS, Ng HK, Naiya T, Ghosh E, Banerjee TK, Lakshmi J, Guha G, Rao VR (2016) Metallomic biomarkers in cerebrospinal fluid and serum in patients with Parkinson’s disease in Indian population. Sci Rep 6:35097.  https://doi.org/10.1038/srep35097 Google Scholar
  70. Seraji-Bozorgzad N, Bao F, George E, Krstevska S, Gorden V, Chorostecki J, Santiago C, Zak I, Caon C, Khan O (2015) Longitudinal study of the substantia nigra in Parkinson disease: a high-field 1 H-MR spectroscopy imaging study. Mov Disord 30:1400–1404.  https://doi.org/10.1002/mds.26323 Google Scholar
  71. Shabayek MI, Sayed OM, Attaia HA, Awida HA, Abozeed H (2014) Diagnostic evaluation of urinary angiogenin (ANG) and clusterin (CLU) as biomarker for bladder cancer. Pathol Oncol Res 20(4):859–866.  https://doi.org/10.1007/s12253-014-9765-y Google Scholar
  72. Shahnawaz M, Tokuda T, Waragai M, Mendez N, Ishii R, Trenkwalder C, Mollenhauer B, Soto C (2017) Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol 74(2):163–172.  https://doi.org/10.1001/jamaneurol.2016.4547 Google Scholar
  73. Singh MP, Patel S, Dikshit M, Gupta YK (2006) Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian J Biochem Biophys 43(2):69–81 http://www.ncbi.nlm.nih.gov/pubmed/16955754 Google Scholar
  74. Sinha A, Patel S, Singh MP, Shukla R (2007a) Blood proteome profiling in case controls and Parkinson’s disease patients in Indian population. Clin Chim Acta 380(1–2):232–234.  https://doi.org/10.1016/j.cca.2007.02.013 Google Scholar
  75. Sinha A, Singh C, Parmar D, Singh MP (2007b) Proteomics in clinical interventions: achievements and limitations in biomarker development. Life Sci 80(15):1345–1354.  https://doi.org/10.1016/j.lfs.2006.12.005 Google Scholar
  76. Sinha A, Srivastava N, Singh S, Singh AK, Bhushan S, Shukla R, Singh MP (2009) Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson’s disease patients: a proteomic approach. Clin Chim Acta 400(1–2):14–20.  https://doi.org/10.1016/j.cca.2008.09.026 Google Scholar
  77. Solier C, Langen H (2014) Antibody-based proteomics and biomarker research-current status and limitations. Proteomics 14(6):774–783.  https://doi.org/10.1002/pmic.201300334 Google Scholar
  78. Srivastava G, Singh K, Tiwari MN, Singh MP (2010) Proteomics in Parkinson’s disease: current trends, translational snags and future possibilities. Expert Rev Proteomics 7(1):127–139.  https://doi.org/10.1586/epr.09.91 Google Scholar
  79. Starhof C, Hejl AM, Heegaard NHH, Carlsen AL, Burton M, Lilje B, Winge K (2018a) The biomarker potential of cell-free microRNA from cerebrospinal fluid in parkinsonian syndromes. Mov Disord 34(2):246–254.  https://doi.org/10.1002/mds.27542 Google Scholar
  80. Starhof C, Winge K, Heegaard NHH, Skogstrand K, Friis S, Hejl A (2018b) Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes. J Neuroinflammation 15(1):305.  https://doi.org/10.1186/s12974-018-1339-6 Google Scholar
  81. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, Hintzen RQ, Hughes SG, Johnson MH, Krasulova E, Kuhle J, Magnone MC, Rajda C, Rejdak K, Schmidt HK, van Pesch V, Waubant E, Wolf C, Giovannoni G, Hemmer B, Tumani H, Deisenhammer F (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73(22):1914–1922.  https://doi.org/10.1212/WNL.0b013e3181c47cc2 Google Scholar
  82. Teunissen CE, Tumani H, Engelborghs S, Mollenhauer B (2014) Biobanking of CSF: international standardization to optimize biomarker development. Clin Biochem 47(4–5):288–292.  https://doi.org/10.1016/j.clinbiochem.2013.12.024 Google Scholar
  83. Tripathi MK, Rajput C, Mishra S, Ur Rasheed MS, Singh MP (2019) Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: feats, constraints and flaws of modulators. Neurotox Res 35(1):260–270.  https://doi.org/10.1007/s12640-018-9917-z Google Scholar
  84. Ur Rasheed MS, Tripathi S, Mishra S, Singh MP (2017) Coherent and contradictory facts, feats and fictions associated with metal accumulation in Parkinson’s disease: epicenter or outcome, yet a demigod question. Mol Neurobiol 54(6):4738–4755.  https://doi.org/10.1007/s12035-016-0016-y Google Scholar
  85. van der Zee S, Vermeiren Y, Fransen E, Van Dam D, Aerts T, Gerritsen MJ, Spikman JM, van Laar T, De Deyn PP (2018) Monoaminergic markers across the cognitive spectrum of Lewy body disease. J Park Dis 8:71–84.  https://doi.org/10.3233/JPD-171228 Google Scholar
  86. van Dijk KD, Persichetti E, Chiasserini D, Eusebi P, Beccari T, Calabresi P, Berendse HW, Parnetti L, van de Berg WD (2013) Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov Disord 28(6):747–754.  https://doi.org/10.1002/mds.25495 Google Scholar
  87. Vermeiren Y, De Deyn PP (2017) Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: the locus coeruleus story. Neurochem Int 102:22–32.  https://doi.org/10.1016/j.neuint.2016.11.009 Google Scholar
  88. Weckle A, Aiello AE, Uddin M, Galea S, Coulborn RM, Soliven R, Meier H, Wildman DE (2015) Rapid fractionation and isolation of whole blood components in samples obtained from a community-based setting. J Vis Exp 2015:105.  https://doi.org/10.3791/52227 Google Scholar
  89. Willemse EA, Teunissen CE (2015) Biobanking of cerebrospinal fluid for biomarker analysis in neurological diseases. Adv Exp Med Biol 864:79–93.  https://doi.org/10.1007/978-3-319-20579-3_7 Google Scholar
  90. Willkommen D, Lucio M, Schmitt-Kopplin P, Gazzaz M, Schroeter M, Sigaroudi A, Michalke B (2018) Species fractionation in a case-control study concerning Parkinson’s disease: Cu-amino acids discriminate CSF of PD from controls. J Trace Elem Med Biol 49:164–170.  https://doi.org/10.1016/j.jtemb.2018.01.005 Google Scholar
  91. Yazdani U, Zaman S, Hynan LS, Brown LS, Dewey RB Jr, Karp D, German DC (2016) Blood biomarker for Parkinson disease: peptoids. Parkinsons Dis 2:16012.  https://doi.org/10.1038/npjparkd.2016.12 Google Scholar
  92. Zhang X, Yin X, Yu H, Liu X, Yang F, Yao J, Jin H, Yang P (2012) Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst 137(2):490–495.  https://doi.org/10.1039/c1an15551b Google Scholar
  93. Zhao X, Xiao WZ, Pu XP, Zhong LJ (2010) Proteome analysis of the sera from Chinese Parkinson’s disease patients. Neurosci Lett 479(2):175–179.  https://doi.org/10.1016/j.neulet.2010.05.063 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment GroupCSIR-Indian Institute of Toxicology Research (CSIR-IITR)LucknowIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)LucknowIndia

Personalised recommendations