Age-Related Decrease in Tyrosine Hydroxylase Immunoreactivity in the Substantia Nigra and Region-Specific Changes in Microglia Morphology in HIV-1 Tg Rats

  • David R. Goulding
  • Andrew Kraft
  • Peter R. Mouton
  • Christopher A. McPherson
  • Valeria Avdoshina
  • Italo Mocchetti
  • G. Jean HarryEmail author
Original Article


Animal models have been used to study cellular processes related to human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorders (HAND). The HIV-1 transgenic (Tg) rat expresses HIV viral genes except the gag-pol replication genes and exhibits neuropathological features similar to HIV patients receiving combined antiretroviral therapy (cART). Using this rat, alterations in dopaminergic function have been demonstrated; however, the data for neuroinflammation and glial reactivity is conflicting. Differences in behavior, tyrosine hydroxylase (TH) immunoreactivity, neuroinflammation, and glia reactivity were assessed in HIV-1 Tg male rats. At 6 and 12 weeks of age, rotarod performance was diminished, motor activity was not altered, and active avoidance latency performance and memory were diminished in HIV-1 Tg rats. TH+ immunoreactivity in the substantia nigra (SN) was decreased at 8 months but not at 2–5 months. At 5 months, astrocyte and microglia morphology was not altered in the cortex, hippocampus, or SN. In the striatum, astrocytes were unaltered, microglia displayed slightly thickened proximal processes, mRNA levels for Iba1 and Cd11b were elevated, and interleukin (Il)1α,Cxcr3, and cell adhesion molecule, Icam, decreased. In the hippocampus, mRNA levels for Tnfa and Cd11b were slightly elevated. No changes were observed in the cortex or SN. The data support an age-related effect of HIV proteins upon the nigrostriatal dopaminergic system and suggest an early response of microglia in the terminal synaptic region with little evidence of an associated neuroinflammatory response across brain regions.


HAND HIV Rotarod Dopamine Microglia Hippocampus Astrocyte Neuroinflammation Learning 


Funding Information

This work was supported in part by HHS grants NS079172 and NS074916 to IM and NIH intramural research funding Z01 ES021164-12 and Z01 ES101623-05 to JH.

Compliance with Ethical Standards

Animal studies were done in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals following approved animal protocols from the Animal Care and Use Committee of the National Institute of Environmental Health Sciences.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12640_2019_77_MOESM1_ESM.pdf (6 mb)
ESM 1 (PDF 6097 kb)


  1. Atluri VS, Kanthikeel SP, Reddy PV, Yndart A, Nair MP (2013) Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND). PLoS One 8:e61399. CrossRefGoogle Scholar
  2. Avdoshina V, Fields JA, Castellano P, Dedoni S, Palchik G, Trejo M, Adame A, Rockenstein E, Eugenin E, Masliah E,  Mocchetti I (2016) The HIV Protein gp120 Alters Mitochondrial Dynamics in Neurons. Neurotox Res 29 (4):583-593Google Scholar
  3. Avdoshina V, Caragher SP, Wenzel ED, Taraballi F, Moccchetti I, Harry GJ (2017) The viral protein gp120 decreases the acetylation of neuronal tubulin: potential mechanism of neurotoxicity. J Neurochem 141:606–613CrossRefGoogle Scholar
  4. Bachis A, Wenzel E, Boelk A, Becker J, Mocchetti I (2016) The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice. Neurobiol Aging 46:160–168CrossRefGoogle Scholar
  5. Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM (2000) Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 879:42–49CrossRefGoogle Scholar
  6. Blanchard HC, Taha AY, Rapoport SI, Yuan Z-X (2015) Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders. Prostaglandins Leukot Essent Fat Acids 96:25–30CrossRefGoogle Scholar
  7. Berger JR, Kumar M, Kumar A, Fernandez JB, Levin B (1994) Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 8:67-71Google Scholar
  8. Bertrand SJ, Mactutus CF, Harrod SB, Moran LM, Booze RM (2018) HIV-1 proteins dysregulate motivational processes and dopamine circuitry. Sci Rep 8:7869CrossRefGoogle Scholar
  9. Boban J, Kozic D, Turkulov V, Ostojic J, Semnic R, Lendak D, Brkic S (2017) HIV-associated neurodegeneration and neuroimmunity: multivoxel MR spectroscopy study in drug-naïve and treated patients. Eur Radiol 27:4218–4236CrossRefGoogle Scholar
  10. Casas R, Muthusamy S, Wakim PG, Sinharay S, Lentz MR, Reid WC, Hammoud DA (2017) MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat. NeuroImge Clin 17:659–666CrossRefGoogle Scholar
  11. Chan P, Hellmuth J, Spudich S, Valcour V (2016) Cognitive impairment and persistent CNS injury in treated CNS. Curr HIV/AIDS Rep 13:209–217. CrossRefGoogle Scholar
  12. Chen MF, Gill AJ, Kolson DL (2014) Neuropathogenesis of HIV-associated neurocognitive disorders: roles for immune activation, HIV blipping and viral tropism. Curr Opin HIV AIDS 9:559-564Google Scholar
  13. Chivero ET, Guo M-L, Periyasamy P, Liao K, Callen SE, Buch S (2017) HIV-1 Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J Neurosci 37:3599–3609CrossRefGoogle Scholar
  14. Cho Y-E, Lee M-H, Song B-J (2017) Neuronal cell death and degeneration through increased nitroxidative stress and tau phosphorylation in HIV-1 transgenic rats. PLoS One 12(1):e0169945CrossRefGoogle Scholar
  15. Clifford KM, Samboju V, Cobigo Y, Milanini B, Marx GA, Hellmuth JM, Rosen HJ, Kramer JH, Allen IE, Valcour VG (2017) Progressive brain atrophy despite persistent viral suppression in HIV over age 60. J Acquir Immune Defic Syndr 76:289–297CrossRefGoogle Scholar
  16. DeVaughn S, Müller-Oehring EM, Markey B, Brontë-Stewart HM, Schulte T (2015) Aging with HIV-1 infection: motor functions, cognition, and attention – a comparison with Parkinson’s Disease. Neuropsychol Rev 25:424–438CrossRefGoogle Scholar
  17. Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24:275–283. CrossRefGoogle Scholar
  18. Gaskill PJ, Carvallo L, Eugenin EA, Berman JW (2012) Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation 9:203. CrossRefGoogle Scholar
  19. Gaskill PJ, Calderon TM, Coley JS, Berman JW (2013) Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J NeuroImmune Pharmacol 8:621–642CrossRefGoogle Scholar
  20. Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW (2014) Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One 9:e108232CrossRefGoogle Scholar
  21. Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H (2017) HIV, Tat and dopamine transmission. Neurobiol Dis 105:51–73CrossRefGoogle Scholar
  22. Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep 12:272–279CrossRefGoogle Scholar
  23. Gelman BB, Spencer JA, Holzer CE III, Soukup VM (2006) Abnormal striatal dopaminergic synapses in national NeuroAIDS tissue consortium subjects with HIV encephalitis. J NeuroImmune Pharmacol 1:410–420CrossRefGoogle Scholar
  24. Ginsberg SD, Alldred MJ, Sunnam SM, Schiroli C, Lee SH, Morgello S, Fischer T (2018) Expression profiling suggests microglial impairment in human immunodeficiency virus neuropathogenesis. Ann Neurol 83:206–417CrossRefGoogle Scholar
  25. Gundersen HJG, Jensen EBV, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology - reconsidered. J Micros 193(3):199-211Google Scholar
  26. Guo M, Bryant J, Sultana S, Jones O, Royal W III, (2012) Effects of vitamin A deficiency and opioids on parvalbumin+ interneurons in the hippocampus of the HIV-1 transgenic rat. Curr HIV Res 10(5):463-468Google Scholar
  27. Harry GJ, Hooth MJ, Vallant M, Behl M, Travlos GS, Howard JL, Price CJ, McBride S, Mervis R, Mouton PR (2014) Developmental neurotoxicity of 3,3′,4,4′-tetrachloroazobenzene with thyroxine deficit: sensitivity of glia and dentate granule neurons in the absence of behavioral changes. Toxics 3:496–532CrossRefGoogle Scholar
  28. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, For the CHARTER Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087–2096CrossRefGoogle Scholar
  29. Heppner FL, Roth K, Nitsch R, Hailer NP (1998) Vitamin E induces ramification and downregulation of adhesion molecules in cultured microglial cells. Glia 22:180–188CrossRefGoogle Scholar
  30. Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12CrossRefGoogle Scholar
  31. Hu S, Sheng WS, Lokensgard JR, Peterson PK, Rock RB (2009) Preferential sensitivity of human dopaminergic neurons to gp120-induced oxidative damage. J Neurovirol 15:401–410CrossRefGoogle Scholar
  32. Itoh K, Mehraein P, Weis S (2000) Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathol 99:376–384CrossRefGoogle Scholar
  33. Javadi-Paydar M, Roscoe RF Jr, Denton AR, Mactutus CF, Booze RM (2017) HIV-1 and cocaine disrupt dopamine reuptake and medium spiny neurons in female rat striatum. PLoS One 12(11):e0188404. CrossRefGoogle Scholar
  34. June HL, Yang ARST, Bryant JL, Jones O, Royal W (2009) Vitamin A deficiency and behavioral and motor deficits in the HIV-1 transgenic rat. J Neurovirol 15:380–389CrossRefGoogle Scholar
  35. Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia 56:1199–1214CrossRefGoogle Scholar
  36. Kieburtz KD, Epstein LG, Gelbard HA, Greenamyre JT (1991) Excitotoxicity and dopaminergic dysfunction in the acquired immunodeficiency syndrome dementia complex. Therapeutic implications. Arch Neurol 48:1281–1284CrossRefGoogle Scholar
  37. Kim HJ, Shin AH, Thayer SA (2011) Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp 120-induced synapse loss. Mol Pharmacol 80:357–366CrossRefGoogle Scholar
  38. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neuro-Oncol 15:257–274Google Scholar
  39. Lashomb AL, Vigorito M, Chang SL (2009) Further characterization of the spatial learning deficit in the human immunodeficiency virus-1 transgenic rat. J Neuro-Oncol 15:14–24Google Scholar
  40. Lassiter C, Fan X, Joshi PC, Jacob BA, Sutliff RL, Jones DP, Koval M, Guidot DM (2009) HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction. AIDS ResTher 6(1).
  41. Lee DE, Yue X, Ibrahim WG, Lentz MR, Peterson KL, Jagoda EM, Kassiou M, Maric D, Reid WC, Hammoud DA (2015) Lack of neuroinflammation in the HIV-1 transgenic rat: an [18F]-DPA714 PET imaging study. J Neuroinflammation 12:171. CrossRefGoogle Scholar
  42. Letendre SL, Ellis RJ, Ances BM, McCutchan JA (2010) Neurologic complications of HIV disease and their treatment. Top HIV Med 18:45–55Google Scholar
  43. Levine AJ, Soontornniyomkij V, Achim CL, Masliah E, Gelman BB, Sinsheimer JS, Singer EJ, Moore DJ (2016) Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neuro-Oncol 22:431–441Google Scholar
  44. Leibrand CR, Paris JJ, Ghandour MS, Knapp PE, Kim WK, Hauser KF, McRae M (2017) HIV-1 Tat disrupts blood-brain barrier integrity and increases phagocytic perivascular macrophages and microglia in the dorsal striatum of transgenic mice. Neurosci Lett 640:136–143CrossRefGoogle Scholar
  45. Li MD, Cao J, Wang S, Wang J, Sarkar S, Vigorito M, Ma JZ, Chang SL (2013) Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat. PLoS One.
  46. Liu X, Chang L, Vigorito M, Kass M, Li H, Chang SL (2009) Methamphetamine-induced behavioral sensitization is enhanced in the HIV-1 transgenic rat. J NeuroImmune Pharmacol 4(3):309–316CrossRefGoogle Scholar
  47. Lopez OL, Smith G, Meltzer CC, Becker JT (1999) Dopamine systems in human immunodeficiency virus-associated dementia. Neuropsychiatry Neuropsychol Behav Neurol 12:184–192Google Scholar
  48. Mamik MK, Hui E, Branton WG, McKenzie BA, Chisholm J, Cohen EA, Power C (2017) HIV-1 viral protein R activates NLRP3 inflammasome in microglia: implications for HIV-1 associated neuroinflammation. J NeuroImmune Pharmacol 12:233–248CrossRefGoogle Scholar
  49. Marcario JK, Manaye KF, Santacruz KS, Mouton PR, Berman NEJ, Cheney PD (2004) Severe subcortical degeneration in macaques infected with neurovirulent simian immunodeficiency virus. J Neurovirol 10:1–13CrossRefGoogle Scholar
  50. Marker DF, Tremblay M-E, Puccini JM, Barbieri J, Gantz-Maarker MA, Loweth CJ, Muly C, Lu S-M, Goodfellow VS, Dewhurst S, Gelbard HA (2013) The new small-molecule mixed-lineage kinase 3 inhibitor URMC-099 is neuroprotective and anti-inflammatory in models of human immunodeficiency virus-associated neurocognitive disorders. J Neurosci 33:9998–10010CrossRefGoogle Scholar
  51. Massaquoi SG, Hallett M (1998) Ataxia and other cerebellar syndromes. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Williams & Wilkins, BaltimoreGoogle Scholar
  52. McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67:699–714Google Scholar
  53. McIntosh S, Sexton T, Pattison LP, Childers SR, Hemby SE (2015) Increased sensitivity to cocaine self-administration in HIV-1 transgenic rats is associated with changes in striatal dopamine transporter binding. J NeuroImmune Pharmacol 10:493–505CrossRefGoogle Scholar
  54. McLaurin KA, Booze RM, Mactutus CF, Fairchild AJ (2017) Sex matters: robust sex differences in signal detection in the HIV-1 transgenic rat. Front Behav Neurosci 11:212. CrossRefGoogle Scholar
  55. McLaurin KA, Booze RM, Mactutus CF (2018) Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1 associated neurocognitive disorders. J Neurovirol 24:229–245CrossRefGoogle Scholar
  56. Miller DR, Shaerzadeh F, Phan L, Sharif, Gamble-George J, McLaughlin JP, Streit WJ, Khoshbouei H (2018) HIV-1 Tat regulation of dopamine transmission and microglial reactivity is brain region specific. Glia.
  57. Moran LM, Booze RM, Webb KM, Mactutus CF (2013) Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol 239:139–147CrossRefGoogle Scholar
  58. Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823CrossRefGoogle Scholar
  59. Mouton PR, Gokhale AM, Ward NL, West MJ (2002) Stereological length estimation using spherical probes. J Microsc 206(1):54-64Google Scholar
  60. Mouton PR, Gordon M (2010) Stereological and image analysis techniques for quantitative assessment of neurotoxicology. In: Neurotoxicology, 3rd ed. Ed: GJ Harry, H.A. Tilson, London: Informa PressGoogle Scholar
  61. Nemeth CL, Glasper ER, Harrell CS, Malviya SA, Otis JS, Neigh GN (2014) Meloxicam blocks neuroinflammation, but not depressive-like behaviors, in HIV-1 transgenic female rats. PLoS One 9(10):e108399CrossRefGoogle Scholar
  62. Nesil T, Cao J, Yang Z, Chang SL, Li MD (2015) Nicotine attenuates the effect of HIV-1 proteins on the neural circuits of working and contextual memories. Mol Brain 8:43. CrossRefGoogle Scholar
  63. Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ (2019) Pole of macrophage dopamine receptors in mediating cytokine production: implications for neuroinflammation in the context of HIV-associated neurocognitive disorders. J NeuroImmune Pharmacol 14:134–156CrossRefGoogle Scholar
  64. Nosheny RL, Bachis A, Aden SA, DeBernardi MA, Mocchetti I (2006) Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line derived neurotrophic factor levels and causes apoptosis in the substantia nigra. J Neurobiol 66:1311–1321CrossRefGoogle Scholar
  65. NTP (National Toxicology Program) (2015) Neurobehavioral testing specifications. neurospecs090415_508.pdf [accessed 06/14/2019]Google Scholar
  66. Packard MG, White NM (1991) Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci 105:295–306CrossRefGoogle Scholar
  67. Pang X, Panee J (2016) Anti-inflammatory function of Phyllostachys edulis extract in the hippocampus of HIV-1 transgenic mice. J HIV AIDS 2(3).
  68. Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101CrossRefGoogle Scholar
  69. Ramirez F, Moscarello JM, LeDoux JE, Sears RM (2015) Active avoidance requires a serial basal amygdala to nucleus accumbens shell circuit. J Neurosci 35:3470–3477CrossRefGoogle Scholar
  70. Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther.
  71. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24:8500–8509CrossRefGoogle Scholar
  72. Ravichandran KS (2003) “Recruitment signals” from apoptotic cells: invitation to a quiet meal. Cell 113(7):817–820CrossRefGoogle Scholar
  73. Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA (2016a) Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol 292:116–125CrossRefGoogle Scholar
  74. Reid WC, Casas R, Papadakis GZ, Muthusamy S, Lee DE, Ibrahim WG, Nair A, Koziol D, Maric D, Hammoud DA (2016b) Neurobehavioral abnormalities in the HIV-1 transgenic rat do not correspond to neuronal hypometabolism on 18F-FDG-PET. PLoS One 11(3):e0152265. CrossRefGoogle Scholar
  75. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O'Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Bryant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98(16):9271–9276CrossRefGoogle Scholar
  76. Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP (2014) Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 9:26. CrossRefGoogle Scholar
  77. Reyes MG, Faraldi F, Senseng S, Flowers C, Pariello R (1991) Nigral degeneration in acquired immune deficiency syndrome (AIDS). Acta Neuropathol 82:39–44CrossRefGoogle Scholar
  78. Roscoe RF Jr, Mactutus CF, Booze RM (2014) HIV-1 transgenic female rat: synaptodendritic alterations of medium spiny neurons in the nucleus accumbens. J NeuroImmune Pharmacol 9(5):642–653CrossRefGoogle Scholar
  79. Rowson SA, Harrell CS, Bekhbat M, Gangavelli A, Wu MJ, Kelly SD, Reddy R, Neigh GN (2016) Neuroinflammation and behavior in HIV-1 transgenic rats exposed to chronic adolescent stress. Front Psychiatry 7:102. CrossRefGoogle Scholar
  80. Royal W III, Zhang L, Guo M, Jones O, David H, Bryant JL (2012) Immune activation, viral gene product expression and neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol 247:16–24CrossRefGoogle Scholar
  81. Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahem GP, Mocchetti I (2017) Human immunodeficiency virus promotes mitochondrial toxicity. Neurotox Res 32:723–733CrossRefGoogle Scholar
  82. Ru W, Tang S-J (2017) HIV-associated synaptic degeneration. Mol Brain 10:40. CrossRefGoogle Scholar
  83. Sacktor N, Robertson K (2014) Evolving clinical phenotypes in HIV-associated neurocognitive disorders. Curr Opin HIV AIDS 9(6):517–520CrossRefGoogle Scholar
  84. Sanford R, Fellows LK, Ances BM, Collins DL (2018) Association of brain structure changes and cognitive function with combinational antiretroviral therapy in HIV-positive individuals. JAMA Neurol 75:72–79CrossRefGoogle Scholar
  85. Sanna PP, Repunte-Canonigo V, Masliah E, Lefebvre C (2017) Gene expression patterns associated with neurological disease in human HIV infection. PLoS One 12(4):e0175316. CrossRefGoogle Scholar
  86. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder-pathogenesis and prospects for treatment. Nat Rev Neurol 12:234–248CrossRefGoogle Scholar
  87. Schier CJ, Marks WD, Paris JJ, Barbour AJ, McLane VD, Maragos WF, McQuiston AR, Knapp PE, Hauser KF (2017) Selective vulnerability of striatal D2 versus D1 dopamine receptor-expressing medium spiny neurons in HIV-1 Tat transgenic male mice. J Neurosci 37:5758–5769CrossRefGoogle Scholar
  88. Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P (2011) HIV-1 infection and cognitive impairment in the cART era: a review. AIDS 25(5):561–575CrossRefGoogle Scholar
  89. Shin AH, Kim HJ, Thayer SA (2012) Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat. Br J Pharmacol 166:1002–1017CrossRefGoogle Scholar
  90. Sheppard DP, Woods SP, Bondi MW, Gilbert PE, Massman PJ, Doyle KL, HIV Neurobehavioral Research Program (2015) Does older age confer an increased risk of incident neurocognitive disorders among persons living with HIV disease? Clin Neuropsychol 29:656–677CrossRefGoogle Scholar
  91. Silvers JM, Aksenov MY, Aksenova MV, Beckley J, Olton P, Mactutus CF, Booze RM (2006) Dopaminergic marker proteins in the substantia nigra of human immunodeficiency virus type 1-infected brains. J NeuroVirol 12:140–145CrossRefGoogle Scholar
  92. Sinharay S, Lee D, Shah S, Muthusamy S, Papadakis GZ, Zhang X, Maric D, Reid WC, Hammoud DA (2017) Cross-sectional and longitudinal small animal PET shows pre and post-synaptic striatal dopaminergic deficits in an animal model of HIV. Nucl Med Biol 55:27–33CrossRefGoogle Scholar
  93. Stuchlik A, Rehakova L, Telensky P, Vales K (2007) Morris water maze learning in Long-Evans rats is differentially affected by blockade of D1-like and D2-like dopamine receptors. Neurosci Lett 422:169–174CrossRefGoogle Scholar
  94. Theodore S, Cass WA, Dwoskin LP, Maragos WF (2012) HIV-1 protein Tat inhibits vesicular monamine transporter-2 activity in rat striatum. Synapse 66:755–757CrossRefGoogle Scholar
  95. Underwood J, Cole JH, Caan M, DeFrancesco D, Leech R, van Zoest RA, Su T, Geurtsen GJ, Schmand BA, Portegies P, Prins M, Wit FW, Sabin CA, Majoie C, Reiss P, Winston A, Sharp DJ (2017) Gray and white matter abnormalities in treated HIV-disease and their relationship to cognitive function. Clin Infect Dis 65:422–432CrossRefGoogle Scholar
  96. van den Dries LWJ, Wagener MN, Jiskoot LC, Visser M, Robertson KR, Adriani KS, van Gorp ECM (2017) Neurocognitive impairment in a chronically well-suppressed HIV-infected population: the Dutch TREVI cohort study. AIDS Patient Care STDs 31:329–334CrossRefGoogle Scholar
  97. Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, Rabiner EA, Kalk N, Bishop C, Gunn RN, Matthews PM, Winston A (2016) Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology 86:1425–1432CrossRefGoogle Scholar
  98. Vigorito M, Lashomb AL, Chang SL (2007) Spatial learning and memory in HIV-1 transgenic rats. J NeuroImmune Pharmacol 2:319–328CrossRefGoogle Scholar
  99. Vigorito M, Cao J, Li MD, Chang SL (2013) Acquisition and long-term retention of spatial learning in the human immunodeficiency virus-1 transgenic rat: effects of repeated nicotine treatment. J Neuro-Oncol 19:157–165Google Scholar
  100. Walsh JG, Reinke SN, Mamik MK, McKenzie BA, Maingat F, Branton WG, Broadhurst DI, Power C (2014) Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 11:35. CrossRefGoogle Scholar
  101. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458CrossRefGoogle Scholar
  102. Webb KM, Aksenov MY, Mactutus CF, Booze RM (2010) Evidence for developmental dopaminergic alterations in the human immunodeficiency virus-1 transgenic rat. J Neurovirol 16:168–173CrossRefGoogle Scholar
  103. Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J NeuroImmune Pharmacol 4:430–447CrossRefGoogle Scholar
  104. Yang Z, Nesil T, Connaghan KP, Li MD, Chang S (2016) Modulation effect of HIV-1 viral proteins and nicotine on expression of the immune-related genes in brain of the HIV-1 transgenic rats. J NeuroImmune Pharmacol 11:562–571CrossRefGoogle Scholar
  105. Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12:16–24CrossRefGoogle Scholar
  106. Zhu J, Yuan Y, Midde NM, Gomez AM, Sun WL, Quizon PM, Zhan CG (2016) HIV-1 transgenic rats display and increase in 3[H] dopamine uptake in the prefrontal cortex and striatum. J Neurovirol 22:282–292CrossRefGoogle Scholar

Copyright information

©  This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2019

Authors and Affiliations

  1. 1.Comparative Medicine BranchNational Institute of Environmental Health SciencesResearch Triangle ParkUSA
  2. 2.National Toxicology Program LaboratoryNational Institute of Environmental Health Sciences (NIEHS)Research Triangle ParkUSA
  3. 3.U.S. Environmental Protection Agency HeadquartersWashingtonUSA
  4. 4.SRC BiosciencesTampaUSA
  5. 5.Laboratory of Preclinical Neurobiology, Department of NeuroscienceGeorgetown UniversityWashingtonUSA

Personalised recommendations