Advertisement

Mechanism Underlying Organophosphate Paraoxon-Induced Kinetic Tremor

  • Higor Alves Iha
  • Naofumi Kunisawa
  • Saki Shimizu
  • Misaki Onishi
  • Yuji Nomura
  • Nami Matsubara
  • Chihiro Iwai
  • Mizuki Ogawa
  • Mai Hashimura
  • Kazuaki Sato
  • Masaki Kato
  • Yukihiro OhnoEmail author
Original Article
  • 3 Downloads

Abstract

Organophosphates (OPs) inhibit cholinesterase and hyperactivate the acetylcholinergic nervous system in the brain, causing motor disorders (e.g., tremor and seizures). Here, we performed behavioral and immunohistochemical studies in mice and rats to investigate the tremorgenic mechanism of paraoxon, an active metabolite of parathion. Treating animals with paraoxon (0.15–0.6 mg/kg, i.p.) elicited kinetic tremor in a dose-dependent manner. Expressional analysis of Fos protein, a biomarker of neural excitation, revealed that a tremorgenic dose of paraoxon (0.6 mg/kg) significantly and region-specifically elevated Fos expression in the cerebral cortex (e.g., sensory cortex), hippocampal CA1, globus pallidus, medial habenula, and inferior olive (IO) among 48 brain regions examined. A moderate increase in Fos expression was also observed in the dorsolateral striatum while the change was not statistically significant. Paraoxon-induced tremor was inhibited by the nicotinic acetylcholine (nACh) receptor antagonist mecamylamine (MEC), but not affected by the muscarinic acetylcholine receptor antagonist trihexyphenidyl (THP). In addition, paraoxon-induced Fos expression in the IO was also antagonized by MEC, but not by THP, and lesioning of the IO markedly suppressed tremorgenic action of paraoxon. The present results suggest that OPs elicit kinetic tremor at least partly by activating IO neurons via nACh receptors.

Keywords

Organophosphate pesticides Paraoxon Tremor Fos protein expression Inferior olive 

Notes

Funding Information

This study was supported in part by a research grant from the Smoking Research Foundation (YO) and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (YO:17K08324, SS:16K21501).

Compliance with Ethical Standards

The experimental protocols were approved by the Experimental Animal Research Committee at the Osaka University of Pharmaceutical Sciences.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. Abrams HK, Leonard AR (1950) Toxicology of organic phosphate insecticides. Calif Med 73:183–186PubMedPubMedCentralGoogle Scholar
  2. Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197CrossRefGoogle Scholar
  3. Arima H, Sobue K, So M, Morishima T, Ando H, Katsuya H (2003) Transient and reversible parkinsonism after acute organophosphate poisoning. J Toxicol Clin Toxicol 41:67–70CrossRefGoogle Scholar
  4. Bastlund JF, Berry D, Watson WP (2005) Pharmacological and histological characterisation of nicotine-kindled seizures in mice. Neuropharmacology 48:975–983CrossRefGoogle Scholar
  5. Batini C, Buisseret-Delmas C, Conrath-Verrier M (1981) Harmaline-induced tremor. I. Regional metabolic activity as revealed by [14C]2-deoxyglucose in cat. Exp Brain Res 42:371–382CrossRefGoogle Scholar
  6. Bernard JF, Buisseret-Delmas C, Laplante S (1984) Inferior olivary neurons: 3-acetylpyridine effects on glucose consumption, axonal transport, electrical activity and harmaline-induced tremor. Brain Res 322:382–387CrossRefGoogle Scholar
  7. Bhatt MH, Elias MA, Mankodi AK (1999) Acute and reversible parkinsonism due to organophosphate pesticide intoxication: five cases. Neurology 52:1467–1471CrossRefGoogle Scholar
  8. Brown DA, Forward A, Marsh S, Caulfield MP (1997) Antagonist discrimination between ganglionic and ileal muscarinic receptors. Br J Pharmacol 120:444–446CrossRefGoogle Scholar
  9. Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138:249–257PubMedGoogle Scholar
  10. Colombo SF, Mazzo F, Pistillo F, Gotti C (2013) Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 86:1063–1073CrossRefGoogle Scholar
  11. Dam M, Wamsley JK, Rapoport SI, London ED (1982) Effects of oxotremorine on local glucose utilization in the rat cerebral cortex. J Neurosci 2:1072–1078CrossRefGoogle Scholar
  12. Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729CrossRefGoogle Scholar
  13. Dow-Edwards D, Dam M, Peterson JM, Rapoport SI, London ED (1981) Effect of oxotremorine on local cerebral glucose utilization in motor system regions of the rat brain. Brain Res 226:281–289CrossRefGoogle Scholar
  14. Faure P, Tolu S, Valverde S, Naude J (2014) Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 282c:86–100CrossRefGoogle Scholar
  15. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San DiegoGoogle Scholar
  16. Gomita Y, Suemaru K, Furuno K, Araki Y (1989) Nicotine-induced tail-tremor and drug effects. Pharmacol Biochem Behav 34:817–821CrossRefGoogle Scholar
  17. Gomita Y, Suemaru K, Furuno K, Araki Y (1991) Tail-tremor induced by exposure to cigarette smoke in rats. Pharmacol Biochem Behav 40:453–455CrossRefGoogle Scholar
  18. Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491CrossRefGoogle Scholar
  19. Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107CrossRefGoogle Scholar
  20. Hoffman GE, Lyo D (2002) Anatomical markers of activity in neuroendocrine systems: are we all ‘fos-ed out’? J Neuroendocrinol 14:259–268CrossRefGoogle Scholar
  21. Iha HA, Kunisawa N, Tokudome K, Mukai T, Kinboshi M, Shimizu S, Ohno Y (2016) Immunohistochemical analysis of Fos protein expression for exploring brain regions (foci) related to central nervous system (CNS) disorders and drug actions. In: Philippu A (ed) In vivo neuropharmacology and neurophysiology. Springer, New York, pp 389–408Google Scholar
  22. Iha HA, Kunisawa N, Shimizu S, Tokudome K, Mukai T, Kinboshi M, Ikeda A, Ito H, Serikawa T, Ohno Y (2017) Nicotine elicits convulsive seizures by activating amygdalar neurons. Front Pharmacol 8:57CrossRefGoogle Scholar
  23. Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43:139–144PubMedGoogle Scholar
  24. Kalistekorhonen E, Ylitalo P, Hanninen O, Raushel FM (1993) Phosphotriesterase decreases paraoxon toxicity in mice. Toxicol Appl Pharmacol 121:275–278CrossRefGoogle Scholar
  25. Kovacs KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297CrossRefGoogle Scholar
  26. Kunisawa N, Iha HA, Shimizu S, Tokudome K, Mukai T, Kinboshi M, Serikawa T, Ohno Y (2016) Nicotine evokes kinetic tremor by activating the inferior olive via alpha7 nicotinic acetylcholine receptors. Behav Brain Res 314:173–180CrossRefGoogle Scholar
  27. Kunisawa N, Iha HA, Nomura Y, Onishi M, Matsubara N, Shimizu S, Ohno Y (2017) Serotonergic modulation of nicotine-induced kinetic tremor in mice. J Pharmacol Sci 134:131–138CrossRefGoogle Scholar
  28. Kunisawa N, Shimizu S, Kato M, Iha HA, Iwai C, Hashimura M, Ogawa M, Kawaji S, Kawakita K, Abe K, Ohno Y (2018) Pharmacological characterization of nicotine-induced tremor: responses to anti-tremor and anti-epileptic agents. J Pharmacol Sci 137:162–169CrossRefGoogle Scholar
  29. Kwon OD, Kim HK (2014) Parkinsonism as late sequela of organophosphate intoxication. J Emerg Trauma Shock 7:124–125CrossRefGoogle Scholar
  30. Liu J, Parsons L, Pope C (2015) Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. Neurotoxicology 50:20–27CrossRefGoogle Scholar
  31. Machaalani R, Kashi PK, Waters KA (2010) Distribution of nicotinic acetylcholinereceptor subunits alpha7 and beta2 in the human brainstem and hippocampalformation. J Chem Neuroanat 40:223–231CrossRefGoogle Scholar
  32. Matthews RT, Chiou CY (1979) Effects of diethylcholine in two animal models of Parkinsonism tremors. Eur J Pharmacol 56:159–162CrossRefGoogle Scholar
  33. Miller AL, Medina MA (1986) Cerebral metabolic effects of organophosphorus anticholinesterase compounds. Metab Brain Dis 1:147–156CrossRefGoogle Scholar
  34. Mohammadi M, Ghani E, Ghasemi A, Khoshbaten A, Asgari A (2008) Synaptosomal GABA uptake decreases in paraoxon-treated rat brain. Toxicology 244:42–48CrossRefGoogle Scholar
  35. Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science (New York, NY) 237:192–197CrossRefGoogle Scholar
  36. Nelson SR, Doull J, Tockman BA, Cristiano PJ, Samson FE (1978) Regional brain metabolism changes induced by acetylcholinesterase inhibitors. Brain Res 157:186–190CrossRefGoogle Scholar
  37. Ohno Y, Shimizu S, Imaki J, Ishihara S, Sofue N, Sasa M, Kawai Y (2008) Anticataleptic 8-OH-DPAT preferentially counteracts with haloperidol-induced Fos expression in the dorsolateral striatum and the core region of the nucleus accumbens. Neuropharmacology 55:717–723CrossRefGoogle Scholar
  38. Ohno Y, Shimizu S, Harada Y, Morishita M, Ishihara S, Kumafuji K, Sasa M, Serikawa T (2009a) Regional expression of Fos-like immunoreactivity following seizures in Noda epileptic rat (NER). Epilepsy Res 87:70–76CrossRefGoogle Scholar
  39. Ohno Y, Shimizu S, Imaki J (2009b) Effects of tandospirone, a 5-HT1A agonistic anxiolytic agent, on haloperidol-induced catalepsy and forebrain Fos expression in mice. J Pharmacol Sci 109:593–599CrossRefGoogle Scholar
  40. Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T (2011) Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 41:261–269CrossRefGoogle Scholar
  41. Ohno Y, Okano M, Masui A, Imaki J, Egawa M, Yoshihara C, Tatara A, Mizuguchi Y, Sasa M, Shimizu S (2012) Region-specific elevation of D1 receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder. Neuropharmacology 63:547–554CrossRefGoogle Scholar
  42. Ohno Y, Shimizu S, Tatara A, Imaoku T, Ishii T, Sasa M, Serikawa T, Kuramoto T (2015a) Hcn1 is a tremorgenic genetic component in a rat model of essential tremor. PLoS One 10:e0123529CrossRefGoogle Scholar
  43. Ohno Y, Shimizu S, Tokudome K, Kunisawa N, Sasa M (2015b) New insight into the therapeutic role of the serotonergic system in Parkinson’s disease. Prog Neurobiol 134:104–121CrossRefGoogle Scholar
  44. Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69:175–186CrossRefGoogle Scholar
  45. Reji KK, Mathew V, Zachariah A, Patil AK, Hansdak SG, Ralph R, Peter JV (2016) Extrapyramidal effects of acute organophosphate poisoning. Clin Toxicol (Phila) 54:259–265CrossRefGoogle Scholar
  46. Samson FE, Pazdernik TL, Cross RS, Giesler MP, Mewes K, Nelson SR, McDonough JH (1984) Soman induced changes in brain regional glucose use. Fundam Appl Toxicol 4:S173–S183CrossRefGoogle Scholar
  47. Schrag A, Schelosky L, Scholz U, Poewe W (1999) Reduction of Parkinsonian signs in patients with Parkinson’s disease by dopaminergic versus anticholinergic single-dose challenges. Mov Disord 14:252–255CrossRefGoogle Scholar
  48. Shih PY, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, Drenan RM (2014) Differential expression and function of nicotinic acetylcholine receptors insubdivisions of medial habenula. J Neurosci 34:9789–9802CrossRefGoogle Scholar
  49. Shimizu S, Mizuguchi Y, Sobue A, Fujiwara M, Morimoto T, Ohno Y (2015) Interaction between anti-Alzheimer and antipsychotic drugs in modulating extrapyramidal motor disorders in mice. J Pharmacol Sci 127:439–445CrossRefGoogle Scholar
  50. Shimizu S, Sogabe S, Yanagisako R, Inada A, Yamanaka M, Iha HA, Ohno Y (2017) Glycine-binding site stimulants of NMDA receptors alleviate extrapyramidal motor disorders by activating the nigrostriatal dopaminergic pathway. Int J Mol Sci 18:E1416CrossRefGoogle Scholar
  51. Shrot S, Ramaty E, Biala Y, Bar-Klein G, Daninos M, Kamintsky L, Makarovsky I, Statlender L, Rosman Y, Krivoy A, Lavon O, Kassirer M, Friedman A, Yaari Y (2014) Prevention of organophosphate-induced chronic epilepsy by early benzodiazepine treatment. Toxicology 323:19–25CrossRefGoogle Scholar
  52. Tatara A, Shimizu S, Masui A, Tamura M, Minamimoto S, Mizuguchi Y, Ochiai M, Mizobe Y, Ohno Y (2015) Atypical antipsychotic properties of AD-6048, a primary metabolite of blonanserin. Pharmacol Biochem Behav 138:14–19CrossRefGoogle Scholar
  53. Thompson JH (1955) Cholinesterase inhibiting insecticides (parathion): chemical and clinical aspects. Calif Med 82:91–95PubMedPubMedCentralGoogle Scholar
  54. Wess J, Lambrecht G, Moser U, Mutschler E (1984) A comparison of the antimuscarinic effects of pirenzepine and N-methylatropine on ganglionic and vascular muscarinic receptors in the rat. Life Sci 35:553–560CrossRefGoogle Scholar
  55. Yelamos F, Diez F, Martin C, Blanco JL, Garcia MJ, Lardelli A, Pena JF (1992) Acute organophosphate insecticide poisonings in the province of Almeria. A study of 187 cases. Med Clin (Barc) 98:681–684Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Higor Alves Iha
    • 1
  • Naofumi Kunisawa
    • 1
  • Saki Shimizu
    • 1
  • Misaki Onishi
    • 1
  • Yuji Nomura
    • 1
  • Nami Matsubara
    • 1
  • Chihiro Iwai
    • 1
  • Mizuki Ogawa
    • 1
  • Mai Hashimura
    • 1
  • Kazuaki Sato
    • 1
  • Masaki Kato
    • 1
  • Yukihiro Ohno
    • 1
    Email author
  1. 1.Department of PharmacologyOsaka University of Pharmaceutical SciencesOsakaJapan

Personalised recommendations