Advertisement

Neurotoxicity Research

, Volume 36, Issue 3, pp 583–601 | Cite as

Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK

  • Md. Sahab UddinEmail author
  • Md. Tanvir Kabir
  • Md. Jakaria
  • Abdullah Al Mamun
  • Kamal Niaz
  • Md. Shah Amran
  • George E. Barreto
  • Ghulam Md AshrafEmail author
Review Article

Abstract

Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.

Keywords

PPARγ Inflammation Aging Vascular dysfunction Oxidative stress ROCK 

Abbreviations

PPARγ

peroxisome proliferator-activated receptor gamma

ROCK

rho-kinase

ROS

reactive oxygen species

eNOS

endothelial nitric oxide synthase

PUFAs

polyunsaturated fatty acids

TZDs

thiazolidinediones

IBD

inflammatory bowel disease.

Notes

Acknowledgments

The authors are grateful to the Department of Pharmacy, Southeast University, Dhaka, Bangladesh.

Authors’ Contributions

This work was carried out in collaboration between all authors. MSU and GMA designed the study, wrote the protocol, and managed the analyses of the study. MSU, MTK, MJ, GEB, and AAM prepared the draft of the manuscript. MSU prepared the figures of the manuscript. KN, MSA, and GEB reviewed the scientific contents of the manuscript. All authors read and approved the final submitted version of the manuscript.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.

References

  1. Adachi M, Kurotani R, Morimura K et al (2006) Peroxisome proliferator activated receptor gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55(8):1104–1113.  https://doi.org/10.1136/gut.2005.081745 Google Scholar
  2. Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A, Rajanayagam O, Semple R, Luan J', Bath L, Zalin A, Labib M, Kumar S, Simpson H, Blom D, Marais D, Schwabe J, Barroso I, Trembath R, Wareham N, Nagy L, Gurnell M, O'Rahilly S, Chatterjee K (2006) Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell Metab 4(4):303–311.  https://doi.org/10.1016/j.cmet.2006.09.003 Google Scholar
  3. Akahori T, Sho M, Hamada K, Suzaki Y, Kuzumoto Y, Nomi T, Nakamura S, Enomoto K, Kanehiro H, Nakajima Y (2007) Importance of peroxisome proliferator-activated receptor-γ in hepatic ischemia/reperfusion injury in mice. J Hepatol 47(6):784–792.  https://doi.org/10.1016/j.jhep.2007.07.030 Google Scholar
  4. Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP (2004) Human bone marrow megakaryocytes and platelets express PPARγ, and PPARγ agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 104(5):1361–1368.  https://doi.org/10.1182/blood-2004-03-0926 Google Scholar
  5. Allred CD, Talbert DR, Southard RC, Wang X, Kilgore MW (2008) PPARgamma1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells. J Nutr 138(2):250–256Google Scholar
  6. Angulo J, Vallejo S, El Assar M et al (2012) Age-related differences in the effects of α and γ peroxisome proliferator-activated receptor subtype agonists on endothelial vasodilation in human microvessels. Exp Gerontol 47(9):734–740.  https://doi.org/10.1016/j.exger.2012.06.014 Google Scholar
  7. Annese V, Rogai F, Settesoldi A, Bagnoli S (2012) PPAR γ in inflammatory bowel disease. PPAR Res 2012:1–9Google Scholar
  8. Aprahamian T, Bonegio RG, Richez C, Yasuda K, Chiang LK, Sato K, Walsh K, Rifkin IR (2009) The peroxisome proliferator-activated receptor gamma agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. J Immunol 182(1):340–346Google Scholar
  9. Argmann C, Dobrin R, Heikkinen S, Auburtin A, Pouilly L, Cock TA, Koutnikova H, Zhu J, Schadt EE, Auwerx J (2009) Pparγ2 is a key driver of longevity in the mouse. PLoS Genet 5(12):e1000752.  https://doi.org/10.1371/journal.pgen.1000752 Google Scholar
  10. Asada K, Sasaki S, Suda T, Chida K, Nakamura H (2004) Antiinflammatory roles of peroxisome proliferator–activated receptor γ in human alveolar macrophages. Am J Respir Crit Care Med 169:195–200Google Scholar
  11. Barroso I, Gurnell M, Crowley VE et al (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883.  https://doi.org/10.1038/47254 Google Scholar
  12. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127(3):777–791.  https://doi.org/10.1053/j.gastro.2004.06.049 Google Scholar
  13. Belmin J, Bernard C, Corman B, Merval R, Esposito B, Tedgui A (1995) Increased production of tumor necrosis factor and interleukin-6 by arterial wall of aged rats. Am J Physiol Circ Physiol 268:H2288–H2293.  https://doi.org/10.1152/ajpheart.1995.268.6.H2288 Google Scholar
  14. Beyer AM, De Lange WJ, Halabi CM et al (2008) Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet. Circ Res 103(6):654–661.  https://doi.org/10.1161/CIRCRESAHA.108.176339 Google Scholar
  15. Blanco FJ, Bernabéu C (2012) The splicing factor SRSF1 as a marker for endothelial senescence. Front Physiol 3(54):1–6Google Scholar
  16. Bloomfield SF, Stanwell-Smith R, Crevel RWR, Pickup J (2006) Too clean, or not too clean: the hygiene hypothesis and home hygiene. Clin Exp Allergy 36(4):402–425Google Scholar
  17. Brandes RP, Fleming I, Busse R (2005) Endothelial aging. Cardiovasc Res 66(2):286–294Google Scholar
  18. Brown KA, Didion SP, Andresen JJ, Faraci FM (2007) Effect of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol 27(9):1941–1946.  https://doi.org/10.1161/ATVBAHA.107.146852 Google Scholar
  19. Brunmeir R, Xu F (2018) Functional regulation of PPARs through post-translational modifications. Int J Mol Sci 19(6).Google Scholar
  20. Calnek DS, Mazzella L, Roser S, Roman J, Hart CM (2003) Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 23(1):52–57.  https://doi.org/10.1161/01.ATV.0000044461.01844.C9 Google Scholar
  21. Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272(16):10811–10816.  https://doi.org/10.1074/JBC.272.16.10811 Google Scholar
  22. Carter AB, Misyak SA, Hontecillas R, Bassaganya-Riera J (2009) Dietary modulation of inflammation-induced colorectal cancer through PPARγ. PPAR Res 2009:498352–498359.  https://doi.org/10.1155/2009/498352 Google Scholar
  23. Cau SBA, Carneiro FS, Tostes RC (2012) Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 3(218):1–11.  https://doi.org/10.3389/fphys.2012.00218 Google Scholar
  24. Caygill CP, Hill MJ (1995) Fish, n-3 fatty acids and human colorectal and breast cancer mortality. Eur J Cancer Prev 4(4):329–332Google Scholar
  25. Celinski K, Dworzanski T, Korolczuk A, Piasecki R, Slomka M, Madro A, Fornal R (2011) Effects of peroxisome proliferator-activated receptors-gamma ligands on dextran sodium sulphate-induced colitis in rats. J Physiol Pharmacol 62(3):347–356Google Scholar
  26. Chantler PD, Lakatta EG (2012) Arterial-ventricular coupling with aging and disease. Front Physiol 3(90):1–12.  https://doi.org/10.3389/fphys.2012.00090 Google Scholar
  27. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001) A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7(1):161–171.  https://doi.org/10.1016/S1097-2765(01)00164-2 Google Scholar
  28. Chinetti G, Fruchart J-C, Staels B (2003) Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int J Obes Relat Metab Disord 3:S41–S45.  https://doi.org/10.1038/sj.ijo.0802499 Google Scholar
  29. Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387.  https://doi.org/10.1152/physrev.00047.2009 Google Scholar
  30. Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, Griffin PR, Spiegelman BM (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466(7305):451–456.  https://doi.org/10.1038/nature09291 Google Scholar
  31. Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G, Kim TS (2000) Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 275(42):32681–32687. https://doi.org/10.1074/jbc.M002577200\rM002577200 [pii]Google Scholar
  32. Collino M, Aragno M, Castiglia S, Miglio G, Tomasinelli C, Boccuzzi G, Thiemermann C, Fantozzi R (2010) Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. Br J Pharmacol 160(8):1892–1902.  https://doi.org/10.1111/j.1476-5381.2010.00671.x Google Scholar
  33. Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21(3):365–371.  https://doi.org/10.1161/01.ATV.21.3.365 Google Scholar
  34. Corona JC, Duchen MR (2016) PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 100:153–163.  https://doi.org/10.1016/j.freeradbiomed.2016.06.023 Google Scholar
  35. Coste A, Lagane C, Filipe C, Authier H, Gales A, Bernad J, Douin-Echinard V, Lepert JC, Balard P, Linas MD, Arnal JF, Auwerx J, Pipy B (2008) IL-13 attenuates gastrointestinal candidiasis in normal and immunodeficient RAG-2(−/−) mice via peroxisome proliferator-activated receptor-gamma activation. J Immunol 180(7):4939–4947.  https://doi.org/10.4049/jimmunol.180.7.4939 Google Scholar
  36. Croasdell A, Duffney PF, Kim N et al (2015) PPAR γ and the innate immune system mediate the resolution of inflammation. PPAR Res 2015:549691Google Scholar
  37. Csiszar A (2009) Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci 14:3128–3144.  https://doi.org/10.2741/3440 Google Scholar
  38. Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NSA, Paola RD, Genovese T, Chatterjee PK, Rosa MD, Caputi AP, Thiemermann C (2003) Rosiglitazone and 15-deoxy-Δ 12,14-prostaglandin J 2, ligands of the peroxisome proliferator-activated receptor-γ (PPAR-γ), reduce ischaemia/reperfusion injury of the gut. Br J Pharmacol 140(2):366–376.  https://doi.org/10.1038/sj.bjp.0705419 Google Scholar
  39. D’Elia RV, Harrison K, Oyston PC et al (2013) Targeting the “cytokine storm” for therapeutic benefit. Clin Vaccine Immunol 20(3):319–327Google Scholar
  40. De Silva TM, Kinzenbaw DA, Modrick ML et al (2016) Heterogeneous impact of ROCK2 on carotid and cerebrovascular function. Hypertension 68(3):809–817.  https://doi.org/10.1161/HYPERTENSIONAHA.116.07430 Google Scholar
  41. De Silva TM, Li Y, Kinzenbaw DA et al (2018) Endothelial PPARγ (peroxisome proliferator–activated receptor-γ) is essential for preventing endothelial dysfunction with aging. Hypertension 72(1):227–234.  https://doi.org/10.1161/HYPERTENSIONAHA.117.10799 Google Scholar
  42. Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20(3):284–287.  https://doi.org/10.1038/3099 Google Scholar
  43. Delerive P, De Bosscher K, Besnard S et al (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274(45):32048–32054.  https://doi.org/10.1074/jbc.274.45.32048 Google Scholar
  44. Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K, Derijard B, Desvergne B, Wahli W, Chambon P, Leibowitz MD, Colombel JF, Auwerx J (2001) Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 193(7):827–838.  https://doi.org/10.1084/jem.193.7.827 Google Scholar
  45. Didion SP, Kinzenbaw DA, Schrader LI, Faraci FM (2006) Heterozygous CuZn superoxide dismutase deficiency produces a vascular phenotype with aging. Hypertension 48(6):1072–1079.  https://doi.org/10.1161/01.HYP.0000247302.20559.3a Google Scholar
  46. Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR (2008) Aging is associated with greater nuclear NF kappa B, reduced I kappa B alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell 7(6):805–812.  https://doi.org/10.1111/j.1474-9726.2008.00438.x Google Scholar
  47. Duan SZ, Usher MG, Mortensen RM (2008) Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res 102(3):283–294.  https://doi.org/10.1161/CIRCRESAHA.107.164384 Google Scholar
  48. Eisenach JH, Gullixson LR, Allen AR, Kost SL, Nicholson WT (2014) Cyclo-oxygenase-2 inhibition and endothelium-dependent vasodilation in younger vs. older healthy adults. Br J Clin Pharmacol 78(4):815–823.  https://doi.org/10.1111/bcp.12397 Google Scholar
  49. El Assar M, Angulo J, Vallejo S et al (2012) Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 3(132):1–13.  https://doi.org/10.3389/fphys.2012.00132 Google Scholar
  50. Emdin CA, Khera AV, Klarin D, Natarajan P, Zekavat SM, Nomura A, Haas M, Aragam K, Ardissino D, Wilson JG, Schunkert H, McPherson R, Watkins H, Elosua R, Bown MJ, Samani NJ, Baber U, Erdmann J, Gormley P, Palotie A, Stitziel NO, Gupta N, Danesh J, Saleheen D, Gabriel S, Kathiresan S (2018) Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137(3):222–232.  https://doi.org/10.1161/CIRCULATIONAHA.117.028021 Google Scholar
  51. Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol 300(5):H1566–H1582.  https://doi.org/10.1152/ajpheart.01310.2010 Google Scholar
  52. Faveeuw C, Fougeray S, Angeli V, Fontaine J, Chinetti G, Gosset P, Delerive P, Maliszewski C, Capron M, Staels B, Moser M, Trottein F (2000) Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-12 production in murine dendritic cells. FEBS Lett 486(3):261–266Google Scholar
  53. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 147(2):227–235.  https://doi.org/10.1111/j.1365-2249.2006.03261.x Google Scholar
  54. Fleenor BS, Seals DR, Zigler ML, Sindler AL (2012) Superoxide-lowering therapy with TEMPOL reverses arterial dysfunction with aging in mice. Aging Cell 11(2):269–276.  https://doi.org/10.1111/j.1474-9726.2011.00783.x Google Scholar
  55. Gao M, Jiang Y, Xiao X, Peng Y, Xiao X, Yang M (2015) Protective effect of pioglitazone on sepsis-induced intestinal injury in a rodent model. J Surg Res 195(2):550–558.  https://doi.org/10.1016/j.jss.2015.02.007 Google Scholar
  56. Genovese T, Esposito E, Mazzon E, di Paola R, Muià C, Meli R, Bramanti P, Cuzzocrea S (2008) Effect of cyclopentanone prostaglandin 15-deoxy-delta12,14PGJ2 on early functional recovery from experimental spinal cord injury. Shock 30(2):142–152.  https://doi.org/10.1097/SHK.0b013e31815dd381 Google Scholar
  57. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14(2):121–141Google Scholar
  58. Goh K, Xiao S-D (2009) Inflammatory bowel disease: a survey of the epidemiology in Asia. J Dig Dis 10(1):1–6.  https://doi.org/10.1111/j.1751-2980.2008.00355.x Google Scholar
  59. Gosset P, Charbonnier AS, Delerive P et al (2001) Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 31(10):2857–2865.  https://doi.org/10.1002/1521-4141(2001010)31:10<2857::AID-IMMU2857>3.0.CO;2-X Google Scholar
  60. Hevener AL, Olefsky JM, Reichart D, Nguyen MTA, Bandyopadyhay G, Leung HY, Watt MJ, Benner C, Febbraio MA, Nguyen AK, Folian B, Subramaniam S, Gonzalez FJ, Glass CK, Ricote M (2007) Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117(6):1658–1669.  https://doi.org/10.1172/JCI31561 Google Scholar
  61. Hodis HN, Mack WJ, Zheng L, Li Y, Torres M, Sevilla D, Stewart Y, Hollen B, Garcia K, Alaupovic P, Buchanan TA (2006) Effect of peroxisome proliferator-activated receptor gamma agonist treatment on subclinical atherosclerosis in patients with insulin-requiring type 2 diabetes. Diabetes Care 29(7):1545–1553.  https://doi.org/10.2337/dc05-2462 Google Scholar
  62. Hontecillas R, Bassaganya-Riera J (2007) Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis. J Immunol 178(5):2940–2949.  https://doi.org/10.4049/JIMMUNOL.178.5.2940 Google Scholar
  63. Hossain MS, Uddin MS, Asaduzzaman M et al (2016) Inquiry of analgesic and anti-inflammatory activities of Xanthosoma sagittifolium L.: an effective medicinal plant. J Coast Lif Med 5(1):22–26.  https://doi.org/10.12980/jclm.5.2017J6-229 Google Scholar
  64. Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274(5295):2100–2103.  https://doi.org/10.1126/science.274.5295.2100 Google Scholar
  65. Hu C, Lu K-T, Mukohda M, Davis DR, Faraci FM, Sigmund CD (2016) Interference with PPARγ in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiol Genomics 48(2):124–134.  https://doi.org/10.1152/physiolgenomics.00087.2015 Google Scholar
  66. Huang FR, Zhan ZP, Luo J, Jiang SW, Peng J (2008) Duration of feeding linseed diet influences peroxisome proliferator-activated receptor γ and tumor necrosis factor gene expression, and muscle mass of growing-finishing barrows. Livest Sci 119(1–3):194–201.  https://doi.org/10.1016/j.livsci.2008.04.003 Google Scholar
  67. Hyong A, Jadhav V, Lee S, Tong W, Rowe J, Zhang JH, Tang J (2008) Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res 1215:218–224.  https://doi.org/10.1016/j.brainres.2008.04.025 Google Scholar
  68. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JWR (2008) Structural basis for the activation of PPARγ by oxidized fatty acids. Nat Struct Mol Biol 15(9):924–931.  https://doi.org/10.1038/nsmb.1474 Google Scholar
  69. Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287(1):G7–17. doi:  https://doi.org/10.1152/ajpgi.00079.2004
  70. Jackson SM, Parhami F, Xi XP, Berliner JA, Hsueh WA, Law RE, Demer LL (1999) Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb. Vasc Biol 19(9):2094–2104Google Scholar
  71. Jacobsen BA, Fallingborg J, Rasmussen HH et al (2006) Increase in incidence and prevalence of inflammatory bowel disease in northern Denmark: a population-based study, 1978-2002. Eur J Gastroenterol Hepatol 18(6):601–606.  https://doi.org/10.1097/00042737-200606000-00005 Google Scholar
  72. Jaudszus A, Gruen M, Watzl B, Ness C, Roth A, Lochner A, Barz D, Gabriel H, Rothe M, Jahreis G (2013) Evaluation of suppressive and pro-resolving effects of EPA and DHA in human primary monocytes and T-helper cells. J Lipid Res 54(4):923–935.  https://doi.org/10.1194/jlr.P031260 Google Scholar
  73. Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86.  https://doi.org/10.1038/34184 Google Scholar
  74. Jin H, Gebska MA, Blokhin IO, Wilson KM, Ketsawatsomkron P, Chauhan AK, Keen HL, Sigmund CD, Lentz SR (2015) Endothelial PPAR- γ protects against vascular thrombosis by downregulating P-selectin expression. Arterioscler Thromb Vasc Biol 35(4):838–844.  https://doi.org/10.1161/ATVBAHA.115.305378 Google Scholar
  75. Kajikawa M, Noma K, Maruhashi T, Mikami S, Iwamoto Y, Iwamoto A, Matsumoto T, Hidaka T, Kihara Y, Chayama K, Nakashima A, Goto C, Liao JK, Higashi Y (2014) Rho-associated kinase activity is a predictor of cardiovascular outcomes. Hypertension 63(4):856–864.  https://doi.org/10.1161/HYPERTENSIONAHA.113.02296 Google Scholar
  76. Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, Kohno N, Yorioka N (2009) PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab Investig 89:47–58.  https://doi.org/10.1038/labinvest.2008.156 Google Scholar
  77. Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD (2010) Does peroxisome proliferator-activated receptor-γ(PPARγ) protect from hypertension directly through effects in the vasculature? J Biol Chem 285(13):9311–9316Google Scholar
  78. Kim T (2013) Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J Cardiol 5(6):164–174.  https://doi.org/10.4330/wjc.v5.i6.164 Google Scholar
  79. Kim HJ, Jung KJ, Yu BP, Cho CG, Choi JS, Chung HY (2002) Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech Ageing Dev 123(12):1589–1595.  https://doi.org/10.1016/S0047-6374(02)00094-5 Google Scholar
  80. Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Novak N, Beyer M, Mayer G, Langhans B, Klockgether T, Waisman A, Eberl G, Schultze J, Famulok M, Kolanus W, Glass C, Kurts C, Knolle PA (2009a) The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206(10):2079–2089.  https://doi.org/10.1084/jem.20082771 Google Scholar
  81. Klotz L, Schmidt S, Heun R, Klockgether T, Kölsch H (2009b) Association of the PPARgamma gene polymorphism Pro12Ala with delayed onset of multiple sclerosis. Neurosci Lett 449(1):81–83.  https://doi.org/10.1016/j.neulet.2008.10.066 Google Scholar
  82. Konkel L (2016) Inflammatory bowel disease in Asia: a second chance at uncovering environmental factors. Environ Health Perspect 124:A49–A54.  https://doi.org/10.1289/ehp.124-A49 Google Scholar
  83. Kulkarni AA, Woeller CF, Thatcher TH et al (2012) Emerging PPARγ-independent role of PPARγ ligands in lung diseases. PPAR Res 2012:705352Google Scholar
  84. Lesniewski LA, Durrant JR, Connell ML, Henson GD, Black AD, Donato AJ, Seals DR (2011) Aerobic exercise reverses arterial inflammation with aging in mice. AJP Hear Circ Physiol 301(3):H1025–H1032.  https://doi.org/10.1152/ajpheart.01276.2010 Google Scholar
  85. Lewis JD, Lichtenstein GR, Deren JJ, Sands BE, Hanauer SB, Katz JA, Lashner B, Present DH, Chuai S, Ellenberg JH, Nessel L, Wu GD, Rosiglitazone for Ulcerative Colitis Study Group (2008) Rosiglitazone for active ulcerative colitis: a randomized placebo-controlled trial. Gastroenterology 134(3):688–695.  https://doi.org/10.1053/j.gastro.2007.12.012 Google Scholar
  86. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK (2000a) Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106(4):523–531.  https://doi.org/10.1172/JCI10370 Google Scholar
  87. Li M, Pascual G, Glass CK (2000b) Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 20(13):4699–4707.  https://doi.org/10.1128/MCB.20.13.4699-4707.2000.Updated Google Scholar
  88. Liang HL, Ouyang Q (2008) A clinical trial of combined use of rosiglitazone and 5-aminosalicylate for ulcerative colitis. World J Gastroenterol 14(1):114–119.  https://doi.org/10.3748/wjg.14.114 Google Scholar
  89. Marathe C, Bradley MN, Hong C, Chao L, Wilpitz D, Salazar J, Tontonoz P (2009) Preserved glucose tolerance in high-fat-fed C57BL/6 mice transplanted with PPARgamma−/−, PPARdelta−/−, PPARgammadelta−/−, or LXRalphabeta−/− bone marrow. J Lipid Res 50(2):214–224.  https://doi.org/10.1194/jlr.M800189-JLR200 Google Scholar
  90. Marcu KB, Otero M, Olivotto E et al (2010) NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 11(5):599–613.  https://doi.org/10.1002/rcm.1690 Google Scholar
  91. Marion-Letellier R, Butler M, Déchelotte P, Playford RJ, Ghosh S (2008) Comparison of cytokine modulation by natural peroxisome proliferator–activated receptor γ ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells—potential for dietary modulation of peroxisome proliferator–activated receptor. Am J Clin Nutr 87:939–948Google Scholar
  92. Martens CR, Seals DR (2016) Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing. J Physiol 594(24):7177–7195Google Scholar
  93. Martin H (2010) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res 690(1–2):57–63Google Scholar
  94. Marx N, Bourcier T, Sukhova GK et al (1999) PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 19(3):546–551.  https://doi.org/10.1038/bjc.2011.434 Google Scholar
  95. Mayhan WG, Arrick DM, Sharpe GM, Sun H (2008) Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress. Microcirculation 15(3):225–236.  https://doi.org/10.1080/10739680701641421 Google Scholar
  96. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB, Perez A, Provost JC, Haffner SM (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296(21):2572–2581.  https://doi.org/10.1001/jama.296.21.joc60158 Google Scholar
  97. Mistriotis P, Andreadis ST (2017) Vascular aging: molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 37:94–116Google Scholar
  98. Modrick ML, Didion SP, Sigmund CD, Faraci FM (2009) Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 296(6):H1914–H1919.  https://doi.org/10.1152/ajpheart.00300.2009 Google Scholar
  99. Modrick ML, Kinzenbaw DA, Chu Y, Sigmund CD, Faraci FM (2012) Peroxisome proliferator-activated receptor-γ protects against vascular aging. Am J Phys Regul Integr Comp Phys 302(10):R1184–R1190.  https://doi.org/10.1152/ajpregu.00557.2011 Google Scholar
  100. Mukohda M, Stump M, Ketsawatsomkron P, Hu C, Quelle FW, Sigmund CD (2016) Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress. Am J Physiol Heart Circ Physiol 310(1):H39–H48.  https://doi.org/10.1152/ajpheart.00490.2015 Google Scholar
  101. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonist inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3(2):59–70.  https://doi.org/10.1038/sj.gene.6363832 Google Scholar
  102. Natarajan C, Muthian G, Barak Y et al (2003) Peroxisome proliferator-activated receptor-gamma-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 171(11):5743–5750Google Scholar
  103. Neri T, Cordazzo C, Carmazzi Y, Petrini S, Balìa C, Stefanelli F, Amoruso A, Brunelleschi S, Breschi MC, Pedrinelli R, Paggiaro P, Celi A (2012) Effects of peroxisome proliferator-activated receptor-γ agonists on the generation of microparticles by monocytes/macrophages. Cardiovasc Res 94(3):537–544.  https://doi.org/10.1093/cvr/cvs125 Google Scholar
  104. Ng SC (2016) Emerging trends of inflammatory bowel disease in Asia. Gastroenterol Hepatol (N Y) 12:193–196Google Scholar
  105. Niino M, Iwabuchi K, Kikuchi S, Ato M, Morohashi T, Ogata A, Tashiro K, Onoé K (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-gamma. J Neuroimmunol 116(1):40–48Google Scholar
  106. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471.  https://doi.org/10.1056/NEJMoa072761 Google Scholar
  107. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, de Larochellière R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM, PERISCOPE Investigators (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299(13):1561–1573.  https://doi.org/10.1001/jama.299.13.1561 Google Scholar
  108. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447(7148):1116–1120.  https://doi.org/10.1038/nature05894 Google Scholar
  109. Oeseburg H, De Boer RA, Buikema H et al (2010) Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase a. Arterioscler Thromb Vasc Biol 30(7):1407–1414.  https://doi.org/10.1161/ATVBAHA.110.206425 Google Scholar
  110. Oh S-H, Park S-M, Lee YH, Cha JY, Lee JY, Shin EK, Park JS, Park BL, Shin HD, Park CS (2009) Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms with the development of asthma. Respir Med 103:1020–1024.  https://doi.org/10.1016/j.rmed.2009.01.015 Google Scholar
  111. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L, Gerhard-Herman M, Machan JT, Kutys R, Virmani R, Collins FS, Wight TN, Nabel EG, Gordon LB (2010) Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 30(11):2301–2309.  https://doi.org/10.1161/ATVBAHA.110.209460 Google Scholar
  112. Padilla J, Leung E, Phipps RP (2002) Human B lymphocytes and B lymphomas express PPAR-γ and are killed by PPAR-γ agonists. Clin Immunol 103(1):22–33.  https://doi.org/10.1006/clim.2001.5181 Google Scholar
  113. Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27(12):1908–1918.  https://doi.org/10.1038/sj.jcbfm.9600491 Google Scholar
  114. Parnell GP, Booth DR (2017) The multiple sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to MS pathogenesis and identify novel therapeutic opportunities. Front Immunol 8(425):1–6Google Scholar
  115. Pascual G, Sullivan AL, Ogawa S et al (2007) Anti-inflammatory and antidiabetic roles of PPARγ. Novartis Found Symp 286:183–196 discussion 196-203Google Scholar
  116. Pelham CJ, Keen HL, Lentz SR, Sigmund CD (2013) Dominant negative PPARγ promotes atherosclerosis, vascular dysfunction, and hypertension through distinct effects in endothelium and vascular muscle. Am J Physiol Integr Comp Physiol 304(9):R690–R701.  https://doi.org/10.1152/ajpregu.00607.2012 Google Scholar
  117. Pendse AA, Johnson LA, Kim HS, McNair M, Nipp CT, Wilhelm C, Maeda N (2012) Pro-and antiatherogenic effects of a dominant-negative P465L mutation of peroxisome proliferator-activated receptor- γ in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 32(6):1436–1444.  https://doi.org/10.1161/ATVBAHA.112.248682 Google Scholar
  118. Penyige A, Poliska S, Csanky E, Scholtz B, Dezso B, Schmelczer I, Kilty I, Takacs L, Nagy L (2010) Analyses of association between PPAR gamma and EPHX1 polymorphisms and susceptibility to COPD in a Hungarian cohort, a case-control study. BMC Med Genet 11:152.  https://doi.org/10.1186/1471-2350-11-152 Google Scholar
  119. Pereira PAT, Da Silva BC, Dos Santos DF et al (2015) Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions. Eur J Pharm Sci 78:132–139.  https://doi.org/10.1016/j.ejps.2015.07.001 Google Scholar
  120. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro-and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291.  https://doi.org/10.1016/j.nbd.2014.08.011 Google Scholar
  121. Rao J, Ye Z, Tang H, Wang C, Peng H, Lai W, Li Y, Huang W, Lou T (2017) The RhoA/ROCK pathway ameliorates adhesion and inflammatory infiltration induced by AGEs in glomerular endothelial cells. Sci Rep 7:39727.  https://doi.org/10.1038/srep39727 Google Scholar
  122. Reddy RC, Narala VR, Keshamouni VG, Milam JE, Newstead MW, Standiford TJ (2008) Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-{gamma}. Blood 112(10):4250–4258.  https://doi.org/10.1182/blood-2007-12-128967 Google Scholar
  123. Reddy AT, Lakshmi SP, Dornadula S, Pinni S, Rampa DR, Reddy RC (2013) The nitrated fatty acid 10-nitro-oleate attenuates allergic airway disease. J Immunol 191(5):2053–2063.  https://doi.org/10.4049/jimmunol.1300730 Google Scholar
  124. Regieli JJ, Jukema JW, Doevendans PA, Zwinderman AH, van der Graaf Y, Kastelein JJ, Grobbee DE (2009) PPARγ variant influences angiographic outcome and 10-year cardiovascular risk in male symptomatic coronary artery disease patients. Diabetes Care 32(5):839–844.  https://doi.org/10.2337/dc08-1819 Google Scholar
  125. Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta 1771(8):926–935Google Scholar
  126. Ricote M, Li AC, Willson TM et al (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391(6662):79–82.  https://doi.org/10.1038/34178 Google Scholar
  127. Rispens E, Bron A, Lee J, Fukumoto J (2012) The pathophysiology of inflammation in cell injury. Pathophysiol Cell Inj J 3:99–126Google Scholar
  128. Roach REJ, Lijfering WM, Flinterman LE, Rosendaal FR, Cannegieter SC (2013) The increased risk of arterial cardiovascular disease after venous thrombosis is determined by common etiologic factors. Blood 121(24):4948–4954.  https://doi.org/10.1182/blood-2013-01-479238 Google Scholar
  129. Rodríguez-Mañas L, El-Assar M, Vallejo S et al (2009) Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell 8(3):226–238.  https://doi.org/10.1111/j.1474-9726.2009.00466.x Google Scholar
  130. Rothwell PM, Coull AJ, Silver LE, Fairhead JF, Giles MF, Lovelock CE, Redgrave JNE, Bull LM, Welch SJV, Cuthbertson FC, Binney LE, Gutnikov SA, Anslow P, Banning AP, Mant D, Mehta Z (2005) Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 366(9499):1773–1783.  https://doi.org/10.1016/S0140-6736(05)67702-1 Google Scholar
  131. Rousseaux C, Lefebvre B, Dubuquoy L, Lefebvre P, Romano O, Auwerx J, Metzger D, Wahli W, Desvergne B, Naccari GC, Chavatte P, Farce A, Bulois P, Cortot A, Colombel JF, Desreumaux P (2005) Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. J Exp Med 201(8):1205–1215.  https://doi.org/10.1084/jem.20041948 Google Scholar
  132. Sánchez-Hidalgo M, Martín AR, Villegas I, Alarcón De La Lastra C (2005) Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces chronic colonic inflammation in rats. Biochem Pharmacol 69(12):1733–1744.  https://doi.org/10.1016/j.bcp.2005.03.024 Google Scholar
  133. Sasaki M, Jordan P, Welbourne T, Minagar A, Joh T, Itoh M, Elrod JW, Alexander JS (2005) Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha. BMC Physiol 5(1):3.  https://doi.org/10.1186/1472-6793-5-3 Google Scholar
  134. Sawada N, Liao JK (2014) Rho/rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid Redox Signal 20(8):1251–1267.  https://doi.org/10.1089/ars.2013.5524 Google Scholar
  135. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120:357–375.  https://doi.org/10.1042/CS20100476 Google Scholar
  136. Seals DR, Kaplon RE, Gioscia-Ryan RA, LaRocca TJ (2014) You’re only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology 29:250–264.  https://doi.org/10.1152/physiol.00059.2013 Google Scholar
  137. Shah YM, Morimura K, Gonzalez FJ (2007) Expression of peroxisome proliferator-activated receptor-gamma in macrophage suppresses experimentally induced colitis. Am J Physiol Gastrointest Liver Physiol 292(2):G657–G666.  https://doi.org/10.1152/ajpgi.00381.2006 Google Scholar
  138. Sharma AM, Staels B (2007) Review: peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92(2):386–395.  https://doi.org/10.1210/jc.2006-1268 Google Scholar
  139. Sharma R, Kaundal RK, Sharma SS (2009) Amelioration of pulmonary dysfunction and neutrophilic inflammation by PPARγ agonist in LPS-exposed guinea pigs. Pulm Pharmacol Ther 22(3):183–189.  https://doi.org/10.1016/j.pupt.2008.11.011 Google Scholar
  140. Shrestha UK, Karimi O, Crusius JBA et al (2010) Distribution of peroxisome proliferator-activated receptor-gamma polymorphisms in Chinese and Dutch patients with inflammatory bowel disease. Inflamm Bowel Dis 16(2):312–319.  https://doi.org/10.1002/ibd.21059 Google Scholar
  141. Sigmund CD (2010) Endothelial and vascular muscle PPARgamma in arterial pressure regulation: lessons from genetic interference and deficiency. Hypertens (Dallas, Tex 1979) 55:437–444.  https://doi.org/10.1161/HYPERTENSIONAHA.109.144170 Google Scholar
  142. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD (1999) A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J Clin Invest 104(4):383–389.  https://doi.org/10.1172/JCI7145 Google Scholar
  143. Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD, Hong SH, Castro GL, Yin YQ, Nelson MC, Hsiao G, Greaves DR, Downes M, Yu RT, Olefsky JM, Evans RM (2009) PPAR activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci 106(52):22504–22509.  https://doi.org/10.1073/pnas.0912487106 Google Scholar
  144. Sung B, Park S, Yu BP, Chung HY (2004) Modulation of PPAR in aging, inflammation, and calorie restriction. J Gerontol A Biol Sci Med Sci 59(10):997–1006.  https://doi.org/10.1093/gerona/59.10.B997 Google Scholar
  145. Syrovets T, Schüle A, Jendrach M, Büchele B, Simmet T (2002) Ciglitazone inhibits plasmin-induced proinflammatory monocyte activation via modulation of p38 MAP kinase activity. Thromb Haemost 88(2):274–281Google Scholar
  146. Szatmari I, Pap A, Rühl R, Ma JX, Illarionov PA, Besra GS, Rajnavolgyi E, Dezso B, Nagy L (2006) PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J Exp Med 203(10):2351–2362.  https://doi.org/10.1084/jem.20060141 Google Scholar
  147. Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014) Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. AJP Hear Circ Physiol 306(3):H299–H308.  https://doi.org/10.1152/ajpheart.00744.2013 Google Scholar
  148. Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34(1):5–14.  https://doi.org/10.1038/hr.2010.201 Google Scholar
  149. Tsai YS, Kim HJ, Takahashi N, Kim HS, Hagaman JR, Kim JK, Maeda N (2004) Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARγ. J Clin Invest 114(2):240–249.  https://doi.org/10.1172/JCI200420964 Google Scholar
  150. Tyagi S, Gupta P, Saini AS et al (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2(4):236–240.  https://doi.org/10.4103/2231-4040.90879 Google Scholar
  151. Ungvari Z, Kaley G, De Cabo R et al (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65(10):1028–1041.  https://doi.org/10.1093/gerona/glq113 Google Scholar
  152. Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 1812(8):1007–1022Google Scholar
  153. Villegas I, Martín AR, Toma W, Alarcón De La Lastra C (2004) Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, protects against gastric ischemia-reperfusion damage in rats: role of oxygen free radicals generation. Eur J Pharmacol 505(1–3):195–203.  https://doi.org/10.1016/j.ejphar.2004.10.020 Google Scholar
  154. Waku T, Shiraki T, Oyama T, Fujimoto Y, Maebara K, Kamiya N, Jingami H, Morikawa K (2009) Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids. J Mol Biol 385(1):188–199.  https://doi.org/10.1016/j.jmb.2008.10.039 Google Scholar
  155. Wan Y, Saghatelian A, Chong LW, Zhang CL, Cravatt BF, Evans RM (2007) Maternal PPARγ protects nursing neonates by suppressing the production of inflammatory milk. Genes Dev 21(15):1895–1908.  https://doi.org/10.1101/gad.1567207 Google Scholar
  156. Wang N, Verna L, Chen NG, Chen J, Li H, Forman BM, Stemerman MB (2002) Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Biol Chem 277(37):34176–34181.  https://doi.org/10.1074/jbc.M203436200 Google Scholar
  157. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014a) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92(1):73–89.  https://doi.org/10.1016/j.bcp.2014.07.018 Google Scholar
  158. Wang M, Jiang L, Monticone RE, Lakatta EG (2014b) Proinflammation: the key to arterial aging. Trends Endocrinol Metab 25(2):72–79Google Scholar
  159. Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK (2003) PPAR{gamma} and PPAR{delta} negatively regulate specific subsets of lipopolysaccharide and IFN-{gamma} target genes in macrophages. Proc Natl Acad Sci 100(11):6712–6717.  https://doi.org/10.1073/pnas.1031789100 Google Scholar
  160. Williams C, Panaccione R, Ghosh S, Rioux K (2011) Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease. Ther Adv Gastroenterol 4(4):237–248.  https://doi.org/10.1177/1756283X11405250 Google Scholar
  161. Williamson K, Stringer SE, Alexander MY (2012) Endothelial progenitor cells enter the aging arena. Front Physiol 3(30):1–7Google Scholar
  162. Wojciechowska W, Li Y, Stolarz-Skrzypek K et al (2012) Cross-sectional and longitudinal assessment of arterial stiffening with age in European and Chinese populations. Front Physiol 3(209):1–5Google Scholar
  163. Xu X, Wang B, Ren C et al (2017) Recent progress in vascular aging: mechanisms and its role in age-related diseases. Aging Dis 8(4):486–505.  https://doi.org/10.14336/AD.2017.0507 Google Scholar
  164. Yamamoto K, Takeshita K, Kojima T et al (2005) Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc Res 66(2):276–285Google Scholar
  165. Yazdani SK, Tillman BW, Berry JL, Soker S, Geary RL (2010) The fate of an endothelium layer after preconditioning. J Vasc Surg 51(1):174–183.  https://doi.org/10.1016/j.jvs.2009.08.074 Google Scholar
  166. Yin Y, Hou G, Li E, Wang Q, Kang J (2014) PPAR gamma agonists regulate tobacco smoke-induced toll like receptor 4 expression in alveolar macrophages. Respir Res 15(28):1–14.  https://doi.org/10.1186/1465-9921-15-28 Google Scholar
  167. Youssef J, Badr M (2004) Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotechnol 2004(3):156–166.  https://doi.org/10.1155/S1110724304308065 Google Scholar
  168. Yu JH, Kim KH, Kim H (2008) SOCS 3 and PPAR-γ ligands inhibit the expression of IL-6 and TGF-β1 by regulating JAK2/STAT3 signaling in pancreas. Int J Biochem Cell Biol 40(4):677–688.  https://doi.org/10.1016/j.biocel.2007.10.007 Google Scholar
  169. Zachary I, Mathur A, Yla-Herttuala S, Martin J (2000) Vascular protection: a novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 20(6):1512–1520.  https://doi.org/10.1161/01.RES.0000218275.54089.12 Google Scholar
  170. Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE (1996) Insulin-and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor γ. J Biol Chem 271(50):31771–31774Google Scholar
  171. Zhang Q, Hu W, Meng B, Tang T (2010) PPAR γ agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol Res 32(8):852–859.  https://doi.org/10.1179/016164110X12556180206112 Google Scholar
  172. Zingarelli B, Sheehan M, Hake PW, O'Connor M, Denenberg A, Cook JA (2003) Peroxisome proliferator activator receptor-γ ligands, 15-deoxy-delta (12,14) -prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol 171(12):6827–6837Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PharmacySoutheast UniversityDhakaBangladesh
  2. 2.Department of PharmacyBRAC UniversityDhakaBangladesh
  3. 3.Department of Applied Life Sciences, Graduate SchoolKonkuk UniversityChungjuSouth Korea
  4. 4.Department of Pharmacology and Toxicology, Faculty of Bio-SciencesCholistan University of Veterinary and Animal SciencesBahawalpurPakistan
  5. 5.Department of Pharmaceutical ChemistryUniversity of DhakaDhakaBangladesh
  6. 6.Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotá, DCColombia
  7. 7.Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile
  8. 8.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  9. 9.Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations