Neurotoxicity Research

, Volume 36, Issue 4, pp 712–723 | Cite as

Engagement of MicroRNA-155 in Exaggerated Oxidative Stress Signal and TRPA1 in the Dorsal Horn of the Spinal Cord and Neuropathic Pain During Chemotherapeutic Oxaliplatin

  • Fenghua Miao
  • Rong Wang
  • Guozhen Cui
  • Xiaoguang Li
  • Ting WangEmail author
  • Xue LiEmail author
Original Article


Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors, but one of the main limiting complications of OXL is painful peripheral neuropathy. The present study was to examine the inhibitory effects of blocking microRNA-155 (miR-155) in the dorsal horn of the spinal cord on neuropathic pain induced by OXL in rats and the underlying mechanisms. Behavioral test was performed to examine mechanical pain and cold sensitivity in rats. Real-time RT-PCR and ELISA were employed to determine miR-155 and products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the dorsal horn. Western blot analysis was used to examine expression of Nrf2-antioxidant response element (Nrf2-ARE), NADPH oxidases (NOXs), and transient receptor potential ankyrin 1 (TRPA1). In results, intrathecal administration of miR-155 inhibitor attenuated mechanical allodynia and cold hyperalgesia in rats with OXL therapy and this was accompanied with restoring of impaired Nrf2-ARE in the dorsal horn. A blockade of miR-155 also attenuated expression of NOX subtype 4 (NOX4) and thereby decreased the levels of 8-iso PGF2α/8-OHdG in the dorsal horn of OXL rats. In addition, inhibiting NOX4 decreased products of oxidative stress in the dorsal horn and attenuated upregulation of TRPA1 induced by OXL. In conclusion, data show the critical role of miR-155 in regulating OXL-induced neuropathic pain likely via oxidative stress–TRPA1 signal pathway, indicating that inhibition of miR-155 has potential benefits in preventing neuropathic pain development during intervention of OXL.


Oxaliplatin Neuropathy MicroRNA-155 Oxidative stress TRPA1 


Compliance with Ethical Standards

All animal protocols were in accordance with the guidelines of the International Association for the Study of Pain and approved by the Institutional Animal Care and Use Committee of Jilin University.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Altenhofer S et al (2012) The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69:2327–2343. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23:406–427. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. CrossRefPubMedGoogle Scholar
  4. Andersen HH, Duroux M, Gazerani P (2014) MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol Dis 71:159–168. CrossRefPubMedGoogle Scholar
  5. Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Azevedo MI, Pereira AF, Nogueira RB, Rolim FE, Brito GAC, Wong DVT, Lima-Júnior RCP, de Albuquerque Ribeiro R, Vale ML (2013) The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain 9:53. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bécouarn Y, Agostini C, Trufflandier N, Boulanger V (2001) Oxaliplatin: available data in non-colorectal gastrointestinal malignancies. Crit Rev Oncol Hematol 40:265–272. CrossRefPubMedGoogle Scholar
  10. Bermudez S, Khayrullina G, Zhao Y, Byrnes KR (2016) NADPH oxidase isoform expression is temporally regulated and may contribute to microglial/macrophage polarization after spinal cord injury. Mol Cell Neurosci 77:53–64. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Calame K (2007) MicroRNA-155 function in B cells. Immunity 27:825–827. CrossRefPubMedGoogle Scholar
  12. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63CrossRefGoogle Scholar
  13. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460. CrossRefPubMedGoogle Scholar
  14. Chen H, Liu Gao MY, Zhang L, He FL, Shi YK, Pan XH, Wang H (2019) MicroRNA-155 affects oxidative damage through regulating autophagy in endothelial cells. Oncol Lett 17:2237–2243. CrossRefPubMedGoogle Scholar
  15. Clark AK, Old EA, Malcangio M (2013) Neuropathic pain and cytokines: current perspectives. J Pain Res 6:803–814. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Di Cesare Mannelli L, Zanardelli M, Failli P, Ghelardini C (2012) Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain 13:276–284. CrossRefPubMedGoogle Scholar
  17. Ding R, Sun B, Liu Z, Yao X, Wang H, Shen X, Jiang H, Chen J (2017) Advanced oxidative protein products cause pain hypersensitivity in rats by inducing dorsal root ganglion neurons apoptosis via NADPH oxidase 4/c-Jun N-terminal kinase pathways. Front Mol Neurosci 10:195. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Duan Z, Su Z, Wang H, Pang X (2018) Involvement of pro-inflammation signal pathway in inhibitory effects of rapamycin on oxaliplatin-induced neuropathic pain. Mol Pain 14:1744806918769426. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10:837–841. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532:1–12. CrossRefPubMedGoogle Scholar
  21. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792:497–505. CrossRefPubMedGoogle Scholar
  22. Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223:102–115. CrossRefPubMedGoogle Scholar
  23. Fidanboylu M, Griffiths LA, Flatters SJ (2011) Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS One 6:e25212. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R, Corradini R (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429. CrossRefPubMedGoogle Scholar
  25. Gaudet AD, Mandrekar-Colucci S, Hall JCE, Sweet DR, Schmitt PJ, Xu X, Guan Z, Mo X, Guerau-de-Arellano M, Popovich PG (2016) miR-155 deletion in mice overcomes neuron-intrinsic and neuron-extrinsic barriers to spinal cord repair. J Neurosci 36:8516–8532. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, Krause KH (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580:497–504. CrossRefPubMedGoogle Scholar
  27. Han M, Toli J, Abdellatif M (2011) MicroRNAs in the cardiovascular system. Curr Opin Cardiol 26:181–189. CrossRefPubMedGoogle Scholar
  28. Hanna, Magdi, Zylicz, Ben Z (2013) Cancer pain. SpringerGoogle Scholar
  29. Hoskin PJ (2008) Radiotherapy. In: Clinical pain management: cancer pain. Hodder Arnold, London, pp 251–255Google Scholar
  30. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK (2012) Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis 3:e426. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jaggi AS, Singh N (2011) Therapeutic targets for the management of peripheral nerve injury-induced neuropathic pain. CNS Neurol Disord Drug Targets 10:589–609CrossRefGoogle Scholar
  32. Kallenborn-Gerhardt W, Schroder K, del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G, Schmidtko A (2012) NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32:10136–10145. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kallenborn-Gerhardt W, Schroder K, Geisslinger G, Schmidtko A (2013) NOXious signaling in pain processing. Pharmacol Ther 137:309–317. CrossRefPubMedGoogle Scholar
  34. Kannarkat G, Lasher EE, Schiff D (2007) Neurologic complications of chemotherapy agents. Curr Opin Neurol 20:719–725. CrossRefPubMedGoogle Scholar
  35. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289. CrossRefPubMedGoogle Scholar
  36. Lam GY, Huang J, Brumell JH (2010) The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 32:415–430. CrossRefPubMedGoogle Scholar
  37. Li H, Huang Y, Ma C, Yu X, Zhang Z, Shen L (2015) MiR-203 involves in neuropathic pain development and represses Rap1a expression in nerve growth factor differentiated neuronal PC12 cells. Clin J Pain 31:36–43. CrossRefPubMedGoogle Scholar
  38. Li W, Jiang D, Li Q, Yao S, Sun X, Yang Y, Meng Z, Liu W (2016) Lipopolysaccharide-induced preconditioning protects against traumatic spinal cord injury by upregulating Nrf2 expression in rats. Life Sci 162:14–20. CrossRefPubMedGoogle Scholar
  39. Liu X, Gu X, Yu M, Zi Y, Yu H, Wang Y, Xie Y, Xiang L (2018) Effects of ginsenoside Rb1 on oxidative stress injury in rat spinal cords by regulating the eNOS/Nrf2/HO-1 signaling pathway. Exp Ther Med 16:1079–1086. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B (2013) Importance of glial activation in neuropathic pain. Eur J Pharmacol 716:106–119. CrossRefPubMedGoogle Scholar
  41. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264. CrossRefPubMedGoogle Scholar
  42. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 74:709–720. CrossRefPubMedGoogle Scholar
  43. Nassini R, Fusi C, Materazzi S, Coppi E, Tuccinardi T, Marone IM, de Logu F, Preti D, Tonello R, Chiarugi A, Patacchini R, Geppetti P, Benemei S (2015) The TRPA1 channel mediates the analgesic action of dipyrone and pyrazolone derivatives. Br J Pharmacol 172:3397–3411. CrossRefPubMedPubMedCentralGoogle Scholar
  44. O'Connell RM, Rao DS, Baltimore D (2012) MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312. CrossRefPubMedGoogle Scholar
  45. Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, Ji RR (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pasetto LM, D’Andrea MR, Rossi E, Monfardini S (2006) Oxaliplatin-related neurotoxicity: how and why? Crit Rev Oncol Hematol 59:159–168. CrossRefPubMedGoogle Scholar
  47. Portenoy RK (2011) Treatment of cancer pain. Lancet 377:2236–2247. CrossRefPubMedGoogle Scholar
  48. Qiu L, Zhang Y (2018) miR-155 modulates cockroach allergen- and oxidative stress-induced cyclooxygenase-2 in asthma. J Immunol 201:916–929. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sakai A, Suzuki H (2013) Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochem Biophys Res Commun 435:176–181. CrossRefPubMedGoogle Scholar
  50. Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142. CrossRefPubMedGoogle Scholar
  52. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887. CrossRefPubMedGoogle Scholar
  53. Sereno M, Gutiérrez-Gutiérrez G, Gómez-Raposo C, López-Gómez M, Merino-Salvador M, Tébar FZ, Rodriguez-Antona C, Casado E (2014) Oxaliplatin induced-neuropathy in digestive tumors. Crit Rev Oncol Hematol 89:166–178. CrossRefPubMedGoogle Scholar
  54. Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, Ding J, Jia L, Yuan W (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61:504–512. CrossRefPubMedGoogle Scholar
  55. Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, Xu N, Meisgen F, Wei T, Bradley M, Stenvang J, Kauppinen S, Alenius H, Lauerma A, Homey B, Winqvist O, Ståhle M, Pivarcsi A (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126:581–589.e581-520. CrossRefPubMedGoogle Scholar
  56. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829CrossRefGoogle Scholar
  57. Sun B, Ding R, Yu W, Wu Y, Wang B, Li Q (2016) Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX-MAPK pathway. Apoptosis 21:825–835. CrossRefPubMedGoogle Scholar
  58. Suzuki Y, Hattori K, Hamanaka J, Murase T, Egashira Y, Mishiro K, Ishiguro M, Tsuruma K, Hirose Y, Tanaka H, Yoshimura S, Shimazawa M, Inagaki N, Nagasawa H, Iwama T, Hara H (2012) Pharmacological inhibition of TLR4-NOX4 signal protects against neuronal death in transient focal ischemia. Sci Rep 2:896. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tai C, Zhu S, Zhou N (2008) TRPA1: the central molecule for chemical sensing in pain pathway? J Neurosci 28:1019–1021. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tan Y, Yang J, Xiang K, Tan Q, Guo Q (2015) Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 40:550–560. CrossRefPubMedGoogle Scholar
  61. Waseem M, Kaushik P, Tabassum H, Parvez S (2018) Role of mitochondrial mechanism in chemotherapy-induced peripheral neuropathy. Curr Drug Metab 19:47–54. CrossRefPubMedGoogle Scholar
  62. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234. CrossRefPubMedGoogle Scholar
  63. Yang ZB, Chen WW, Chen HP, Cai SX, Lin JD, Qiu LZ (2018) MiR-155 aggravated septic liver injury by oxidative stress-mediated ER stress and mitochondrial dysfunction via targeting Nrf-2. Exp Mol Pathol 105:387–394. CrossRefPubMedGoogle Scholar
  64. Zhao M, Isami K, Nakamura S, Shirakawa H, Nakagawa T, Kaneko S (2012) Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol Pain 8:55. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tumor CenterThe First Hospital of Jilin UniversityChangchunChina
  2. 2.Department of Gastrointestinal SurgeryThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations