Advertisement

Neurotoxicity Research

, Volume 35, Issue 3, pp 563–574 | Cite as

Differential Expression of Striatal ΔFosB mRNA and FosB mRNA After Different Levodopa Treatment Regimens in a Rat Model of Parkinson’s Disease

  • Victoria Palafox-Sanchez
  • Victoria Sosti
  • Gabriel Ramirez-García
  • Jaime Kulisevsky
  • José AguileraEmail author
  • I. Daniel LimónEmail author
Original Article
  • 111 Downloads

Abstract

Levodopa-induced dyskinesia (LID) is the main side effect associated with levodopa treatment and represents the biggest challenge for Parkinson’s disease therapy. While the overexpression of ΔFosB transcription factor is related to the development of LID, few studies have been undertaken on fosB gene transcriptional regulation induced by levodopa in vivo. The aim of this study is to evaluate the expression of ΔFosB mRNA and FosB mRNA in the striatum after acute, chronic, and subchronic levodopa treatment in rats with unilateral 6-OHDA-lesion in the medial forebrain bundle. qRT-PCR was used to compare the levels of ΔFosB and FosB mRNA expression in the dopamine-denervated striatum following levodopa treatment. While the results obtained after a single levodopa dose indicate a significant increase of ∆FosB mRNA expression in the striatum 1 h post-injection, the levels returned to baseline values after 24 h. After subchronic levodopa treatment, the levels of ∆FosB and FosB mRNA expression were lower 1 h post-administration of levodopa in comparison with acute effect. However, after chronic levodopa treatment, ∆FosB mRNA expression in the striatum persisted in dyskinetic rats only, and positive correlation was found between the levels of ∆FosB mRNA expression 1 h after levodopa administration and the level of dyskinetic severity. In summary, acute levodopa treatment led to highly increased levels of ∆FosB mRNA expression in the striatum. While repeated administration induced a partial desensitization of the fosB gene in the striatum, it did not suppress its activity completely, which could explain why dyskinesia appears after chronic levodopa treatment.

Keywords

ΔFosB mRNA Levodopa Dyskinesia fosB gene Striatum 

Abbreviations

6-OHDA

6-hydroxydopamine

AIMs

abnormal involuntary movements

IEGs

immediate early genes

Levodopa

L-3,4-dyhidroxyphenylalanine

LID

levodopa-induced dyskinesia

MFB

medial forebrain bundle

mRNA

messenger ribonucleic acid

PD

Parkinson’s disease

MSNs

medium-sized spiny neurons

Notes

Acknowledgements

Thanks to Benjamin Stewart (English language native and academic proofreader) for editing the English language text.

Funding Information

This research was partially supported by CONACyT-Mexico Grant 169023, VIEP-BUAP 2018-2019 awarded to I.D. Limón, and Grant SAF2013 43900, awarded by the Spanish Ministry of Economics and Competitivity to J. Aguilera. We are also grateful for the CIBERNED funding awarded to Kulisevsky J. and the CONACyT-México scholarship (244867) awarded to V. Palafox-Sánchez.

Compliance with Ethical Standards

The experimental protocols were approved by the Ethics Committee of the Research Institute at the Hospital de la Santa Creu i Sant Pau and all procedures were conducted in compliance with Council Directive 2010/63EU of the European Parliament and the Council of 22 September 2010 on the protection of animals used for scientific purposes and the care and use of laboratory animals.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458CrossRefPubMedGoogle Scholar
  2. Alibhai IN, Green TA, Potashkin JA, Nestler EJ (2007) Regulation of fosB and DeltafosB mRNA expression: in vivo and in vitro studies. Brain Res 1143:22–33CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersson M, Hilbertson A, Cenci MA (1999) Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis 6:461–474CrossRefPubMedGoogle Scholar
  4. Andersson M, Konradi C, Cenci MA (2001) cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci 21:9930–9943CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aubert I, Guigoni C, Håkansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, Bezard E (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26CrossRefPubMedGoogle Scholar
  6. Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, Bézard E (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192CrossRefPubMedGoogle Scholar
  7. Berton O, Guigoni C, Li Q, Bioulac BH, Aubert I, Gross CE, Dileone RJ, Nestler EJ, Bezard E (2009) Striatal overexpression of DeltaJunD resets L-DOPA-induced dyskinesia in a primate model of Parkinson disease. Biol Psychiatry 66:554–561CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cao X, Yasuda T, Uthayathas S, Watts RL, Mouradian MM, Mochizuki H, Papa SM (2010) Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci 30:7335–7343CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carle TL, Ohnishi YN, Ohnishi YH, Alibhai IN, Wilkinson MB, Kumar A, Nestler EJ (2007) Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for DeltaFosB stability. Eur J Neurosci 25:3009–3019CrossRefPubMedGoogle Scholar
  10. Carta AR, Tronci E, Pinna A, Morelli M (2005) Different responsiveness of striatonigral and striatopallidal neurons to L-DOPA after a subchronic intermittent L-DOPA treatment. Eur J Neurosci 21:1196–1204CrossRefPubMedGoogle Scholar
  11. Cenci MA, Lee CS, Björklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706CrossRefPubMedGoogle Scholar
  12. Cenci MA, Tranberg A, Andersson M, Hilbertson A (1999) Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment. Neuroscience 94:515–527CrossRefPubMedGoogle Scholar
  13. Chen G, Nie S, Han C, Ma K, Y X, Zhang Z, Papa SM, Cao X (2017) Antidyskinetic effects of MEK inhibitor are associated with multiple neurochemical alterations in the striatum of hemiparkinsonian rats. Front Neurosci 11:112.  https://doi.org/10.3389/fnins.2017.00112 PubMedPubMedCentralGoogle Scholar
  14. Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66:603–613CrossRefPubMedGoogle Scholar
  15. Decressac M, Mattsson B, Björklund A (2012) Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Exp Neurol 235:306–315CrossRefPubMedGoogle Scholar
  16. Dobrazanski P, Noguchi T, Kovary K, Rizzo CA, Lazo PS, Bravo R (1991) Both products of the fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol Cell Biol 11(11):5470–5478CrossRefPubMedPubMedCentralGoogle Scholar
  17. Doucet JP, Nakabeppu Y, Bedard PJ, Hope BT, Nestler EJ, Jasmin BJ, Chen JS, Iadarola MJ, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson GS (1996) Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci 8:365–381CrossRefPubMedGoogle Scholar
  18. Ebihara K, Ishida Y, Takeda R, Abe H, Matsuo H, Kawai K, Magata Y, Nishimori T (2011) Differential expression of FosB, c-Fos, and Zif268 in forebrain regions after acute or chronic L-DOPA treatment in a rat model of Parkinson’s disease. Neurosci Lett 496(2):90–94CrossRefPubMedGoogle Scholar
  19. Engeln M, Bastide MF, Toulmé E, Dehay B, Bourdenx M, Doudnikoff E, Li Q, Gross CE, Boué-Grabot E, Pisani A, Bezard E, Fernagut PO (2014) Selective inactivation of striatal FosB/ΔFosB-expressing neurons alleviates L-DOPA-induced dyskinesia. Biol Psychiatry 79:354–361CrossRefPubMedGoogle Scholar
  20. Fasano S, Bezard E, D'Antoni A, Francardo V, Indrigo M, Qin L, Doveró S, Cerovic M, Cenci MA, Brambilla R (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci U S A 107(50):21824–21829CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feyder M, Södersten E, Santini E, Vialou V, LaPlant Q, EL Watts G, Spigolon K, Hansen JC, Nestler EJ, Fisone G (2016) A role for mitogen- and stress-activated kinase 1 in L-DOPA-induced dyskinesia and ∆FosB expression. Biol Psychiatry 79(5):362–371CrossRefPubMedGoogle Scholar
  22. Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E (2007) Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis 26:452–463CrossRefPubMedGoogle Scholar
  23. Heiman M, Heilbut A, Francardo V, Kulicke R, Fenster RJ, Kolaczyk ED, Mesirov JP, Surmeier DJ, Cenci MA, Greengard P (2014) Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proc Natl Acad Sci U S A 111:4578–4583CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jenner P (2003) The MPTP-treated primate as a model of motor complications in PD: primate model of motor complications. Neurology 61:S4–S11CrossRefPubMedGoogle Scholar
  25. Kageyama K, Itoi K, Iwasaki Y, Niioka K, Watanuki Y, Yamagata S, Nakada Y, Das G, Suda T, Daimon M (2014) Stimulation of corticotropin-releasing factor gene expression by FosB in rat hypothalamic 4B cells. Peptides 51:59–64CrossRefPubMedGoogle Scholar
  26. Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA (2004) Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 17:219–236CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lebel M, Chagniel L, Bureau G, Cyr M (2010) Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis 38(1):59–67CrossRefPubMedGoogle Scholar
  28. Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA (2010) L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465–1476CrossRefPubMedGoogle Scholar
  29. Lindgren HS, Rylander D, Iderberg H, Andersson M, O'Sullivan SS, Williams DR, Lees AJ, Cenci MA (2011) Putaminal upregulation of FosB/ΔFosB-like immunoreactivity in Parkinson’s disease patients with dyskinesia. J Parkinsons Dis 1:347–357PubMedGoogle Scholar
  30. Lundblad M, Picconi B, Lindgren H, Cenci MA (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16:110–123CrossRefPubMedGoogle Scholar
  31. Matsuo A, Ikematsu K, Nakasono I (2009) C-fos, fos-B, c-Jun and dusp-1 expression in the mouse heart after single and repeated methamphetamine administration. Legal Med 11:285–290CrossRefPubMedGoogle Scholar
  32. McCoy MT, Jayanthi S, Wulu JA, Beauvais G, Ladenheim B, Martin TA, Krasnova IN, Hodges AB, Cadet JL (2011) Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology 215(2):353–365CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mendieta L, Bautista E, Sánchez A, Guevara J, Herrando-Grabulosa M, Moran J, Martínez R, Aguilera J, Limón ID (2012) The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine. Neurosci Res 74:156–167CrossRefPubMedGoogle Scholar
  34. Morgan JI, Curran T (1995) Immediate-early genes: ten years on. Trends Neurosci 18(2):66–67CrossRefPubMedGoogle Scholar
  35. Nakabeppu Y, Nathans D (1991) A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64(4):751–759CrossRefPubMedGoogle Scholar
  36. Padovan-Neto FE, Echeverry MB, Chiavegatto S, Del-Bel E (2011) Nitric oxide synthase inhibitor improves de novo and long-term l-DOPA-induced dyskinesia in hemiparkinsonian rats. Front Syst Neurosci 5:40CrossRefPubMedPubMedCentralGoogle Scholar
  37. Palafox-Sánchez V, Mendieta L, Ramírez-García G, Candalija A, Aguilera J, Limón ID (2016) Effect of the C-terminal domain of the heavy chain of tetanus toxin on dyskinesia caused by levodopa in 6-hydroxydopamine-lesioned rats. Pharmacol Biochem Behav 145:33–44CrossRefPubMedGoogle Scholar
  38. Pavón N, Martín AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59(1):64–74CrossRefPubMedGoogle Scholar
  39. Paxinos G, Wattson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  40. Pérez V, Sosti V, Rubio A, Barbanoj M, Gich I, Rodríguez-Alvarez J, Kulisevsky J (2009) Noradrenergic modulation of the motor response induced by long-term levodopa administration in parkinsonian rats. J Neural Transm (Vienna) 116(7):867–874CrossRefGoogle Scholar
  41. Renthal W, Carle TL, Maze I, Covington HE, Truong HT, Alibhai I, Kumar A, Montgomery RL, Olson EN, Nestler EJ (2008) Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci 28(29):7344–7349CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rylski M, Kaczmarek L (2004) Ap-1 targets in the brain. Front Biosci 9:8–23CrossRefPubMedGoogle Scholar
  43. Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Hervé D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 27(26):6995–7005CrossRefPubMedGoogle Scholar
  44. Santini E, Alcacer C, Cacciatore S, Heiman M, Hervé D, Greengard P, JA Girault EV, Fisone G (2009) L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. J Neurochem 108(3):621–633CrossRefPubMedGoogle Scholar
  45. Sgroi S, Capper-Loup C, Paganetti P, Kaelin-Lang A (2016) Enkephalin and dynorphin neuropeptides are differently correlated with locomotor hypersensitivity and levodopa-induced dyskinesia in parkinsonian rats. Exp Neurol 280:80–88CrossRefPubMedGoogle Scholar
  46. Smith LM, Parr-Brownlie LC, Duncan EJ, Black MA, Gemmell NJ, Dearden PK, Reynolds JN (2016) Striatal mRNA expression patterns underlying peak dose L-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat. Neuroscience 324:238–251CrossRefPubMedGoogle Scholar
  47. Solís O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 73:49–59CrossRefPubMedGoogle Scholar
  48. Solís O, Garcia-Montes JR, González-Granillo A, Xu M, Moratalla R (2017) Dopamine D3 receptor modulates L-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex 27(1):435–446PubMedGoogle Scholar
  49. Tekumalla PK, Calon F, Rahman Z, Birdi S, Rajput AH, Hornykiewicz O, Di Paolo T, Bédard PJ, Nestler EJ (2001) Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson’s disease. Biol Psychiatry 50:813–816CrossRefPubMedGoogle Scholar
  50. Ulery PG, Nestler EJ (2007) Regulation of ΔFosB transcriptional activity by Ser27 phosphorylation. Eur J Neurosci 25(1):224–230CrossRefPubMedGoogle Scholar
  51. Valastro B, Andersson M, Lindgren HS, Cenci MA (2007) Expression pattern of JunD after acute or chronic L-DOPA treatment: comparison with deltaFosB. Neuroscience 144:198–207CrossRefPubMedGoogle Scholar
  52. Vallone D, Pellecchia MT, Morelli M, Verde P, DiChiara G, Barone P (1997) Behavioural sensitization in 6-hydroxydopamine-lesioned rats is related to compositional changes of the AP-1 transcription factor: evidence for induction of FosB- and JunD-related proteins. Brain Res Mol Brain Res 52:307–317CrossRefPubMedGoogle Scholar
  53. Westin JE, Andersson M, Lundblad M, Cenci MA (2001) Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson’s disease. Eur J Neurosci 14:1171–1176CrossRefPubMedGoogle Scholar
  54. Winkler C, Kirik D, Björklund A, Cenci MA (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Victoria Palafox-Sanchez
    • 1
    • 2
  • Victoria Sosti
    • 3
    • 4
    • 5
    • 6
  • Gabriel Ramirez-García
    • 7
  • Jaime Kulisevsky
    • 3
    • 4
    • 5
    • 6
  • José Aguilera
    • 2
    • 6
    Email author
  • I. Daniel Limón
    • 1
    • 8
    Email author
  1. 1.Laboratory of Neuropharmacology, Faculty of Chemistry SciencesBenemerita Universidad Autonoma de PueblaPueblaMexico
  2. 2.Institut de Neurociències, Departamento de Bioquímica y de Biología Molecular, Facultat de MedicinaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Movement Disorders Unit, Deparment of Neurology, Hospital de la Santa Creu I Sant PauUniversitat Autonoma de BarcelonaBarcelonaSpain
  4. 4.Laboratory of Neuropsychopharmacology of Movement DisordersHospital de la Santa Creu i Sant PauBarcelonaSpain
  5. 5.Biomedical Research Institute Sant Pau (IIB-Sant Pau)BarcelonaSpain
  6. 6.Centro Investigación Biomedica en Red-Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
  7. 7.Unidad Periférica de Neurociencias Inst. Nacional de Neurología y Neurocirugía Manuel Velasco SUniversidad Nacional Autonoma de MexicoMexico CityMexico
  8. 8.Laboratory of NeuropharmacologyFCQ-Benemérita Universidad Autónoma de PueblaPuebla de ZaragozaMexico

Personalised recommendations