Neurotoxicity Research

, Volume 35, Issue 3, pp 699–710 | Cite as

Effectiveness of Fragment C Domain of Tetanus Toxin and Pramipexole in an Animal Model of Parkinson’s Disease

  • Felipe Patricio
  • Irving Parra
  • Isabel Martínez
  • Francisca Pérez-Severiano
  • Sergio Montes
  • José Aguilera
  • Ilhuicamina Daniel Limón
  • Yousef Tizabi
  • Liliana MendietaEmail author
Original Article


Reports indicate that striatal dopaminergic damage induced by 6-hydoxydopamine (6-OHDA) can be blocked by C-terminal domain of tetanus toxin (Hc-TeTx), suggesting possible therapeutic potential of Hc-TeTx in Parkinson’s disease (PD). Pramipexole (PPX), a D2/D3 dopaminergic agonist, is currently used in PD treatment. The purpose of this study was to gain some understanding of the actions of each drug, including potential antioxidant and anti-inflammatory effects and importantly, to determine whether the combination of the two drugs would be superior to each alone. Adult male Wistar rats were administered 6-OHDA into the dorso­lateral striatum, and the effects of Hc-TeTx fragment (20 μg/kg i.m. every 24 h) for 3 days; PPX (1 mg/kg p.o., every 12 h) for 30 days and their combination on various motor and neurochemical parameters were evaluated. Behavioral tests were carried out at 15 and 30 days post-treatments. At day 31, the animals were sacrificed and the levels of tyrosine hydroxylase (TH), reflecting dopaminergic activity in both striatum and substantia nigra, were evaluated. In addition, indices of astrogliosis, microgliosis, as well as oxidative stress in the striatum were determined. Both Hc-TeTx and PPX ameliorated the motor and neurochemical deficits induced by 6-OHDA lesion; however, the combination of the two drugs was not superior to each alone. Hence, at concentrations used in this study, no significant advantage in combining Hc-TeTx with PPX was noted. Although the results suggest similar neurochemical effects of the two compounds, further evaluation of different concentrations of Hc-TeTx and PPX as potential intervention in PD is warranted.


Tetanus toxin 6-Hydroxydopamine Astrogliosis Microgliosis Oxidative stress Superoxide dismutase Parkinson’s disease 











Glial fibrillary acidic protein


C-terminal domain of heavy-chain tetanus toxin


Ioninized calcium binding adaptor molecule 1


Lipid peroxidation




1-Methyl-4-phenylpyridinium (MPP+)




Nitroblue tetrazolium


Parkinson disease




Substantia nigra pars compacta


Reactive oxygen species


Superoxide dismutase


Tyrosine hydroxylase



We thank Ana Candalija for her help in synthesizing Hc-TeTx fragment and Aldredo López from INNN-MVS for his technical assistance.


This work was supported by grants from PRODEP-SEP (N-PTC-472) and by VIEP-BUAP (2016-2017); F. Patricio was supported by a scholarship from CONACYT-Mexico (581481).

Compliance with Ethical Standards

All animal procedures were carried out in accordance with the Mexican Council for Care and Use of Laboratory Animals and the Norma Oficial Mexicana NOM-062-ZOO-1999

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Allbutt HN, Henderson JM (2007) Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson’s disease. J Neurosci Methods 159:195–202CrossRefGoogle Scholar
  2. Anderson DW, Neavin T, Smith JA, Schneider JS (2001) Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Res 905:44–53CrossRefGoogle Scholar
  3. Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe WH (2009) A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol 8:929–937CrossRefGoogle Scholar
  4. Benson MA, Fu Z, Kim JJ, Baldwin MR (2011) Unique ganglioside recognition strategies for clostridial neurotoxins. J Biol Chem 286:34015–34022CrossRefGoogle Scholar
  5. Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129CrossRefGoogle Scholar
  6. Cacabelos R (2017) Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci 18Google Scholar
  7. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B (2010) Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 9:1106–1117CrossRefGoogle Scholar
  8. Caleo M, Schiavo G (2009) Central effects of tetanus and botulinum neurotoxins. Toxicon 54:593–599CrossRefGoogle Scholar
  9. Calvo AC, Scherer T, Pey AL, Ying M, Winge I, McKinney J, Haavik J, Thony B, Martinez A (2010) Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2. J Neurochem 114:853–863CrossRefGoogle Scholar
  10. Chaib-Oukadour I, Gil C, Rodriguez-Alvarez J, Ortega A, Aguilera J (2009) Tetanus toxin H(C) fragment reduces neuronal MPP+ toxicity. Mol Cell Neurosci 41:297–303CrossRefGoogle Scholar
  11. Chaïb-Oukadour I, Gil C, Aguilera J (2004) The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. J Neurochem 90:1227–1236CrossRefGoogle Scholar
  12. Ciriza J, Moreno-Igoa M, Calvo AC, Yague G, Palacio J, Miana-Mena FJ, Muñoz MJ, Zaragoza P, Brûlet P, Osta R (2008) A genetic fusion GDNF-C fragment of tetanus toxin prolongs survival in a symptomatic mouse ALS model. Restor Neurol Neurosci 26:459–465Google Scholar
  13. Dardou D, Reyrolle L, Chassain C, Durif F (2017) Chronic pramipexole treatment induces compulsive behavior in rats with 6-OHDA lesions of the substantia nigra and ventral tegmental area. Behav Brain Res 332:327–336CrossRefGoogle Scholar
  14. Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G (2006) Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174:459–471CrossRefGoogle Scholar
  15. Deshpande C, Dhir A, Kulkarni SK (2006) Antagonistic activity of ascorbic acid (vitamin C) on dopaminergic modulation: apomorphine-induced stereotypic behavior in mice. Pharmacology 77:38–45CrossRefGoogle Scholar
  16. Dumas M, Schwab ME, Baumann R, Thoenen H (1979) Retrograde transport of tetanus toxin through a chain of two neurons. Brain Res 165:354–357CrossRefGoogle Scholar
  17. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25:1439–1451CrossRefGoogle Scholar
  18. Figueiredo DM, Hallewell RA, Chen LL, Fairweather NF, Dougan G, Savitt JM, Parks DA, Fishman PS (1997) Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp Neurol 145:546–554CrossRefGoogle Scholar
  19. Francis JW, Bastia E, Matthews CC, Parks DA, Schwarzschild MA, Brown RH, Fishman PS (2004a) Tetanus toxin fragment C as a vector to enhance delivery of proteins to the CNS. Brain Res 1011:7–13CrossRefGoogle Scholar
  20. Francis JW, Figueiredo D, vanderSpek JC, Ayala LM, Kim YS, Remington MP, Young PJ, Lorson CL, Ikebe S, Fishman PS, Brown RH (2004b) A survival motor neuron:tetanus toxin fragment C fusion protein for the targeted delivery of SMN protein to neurons. Brain Res 995:84–96CrossRefGoogle Scholar
  21. Gil C, Chaib-Oukadour I, Aguilera J (2003) C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. Biochem J 373:613–620CrossRefGoogle Scholar
  22. Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71CrossRefGoogle Scholar
  23. Granado N, Ares-Santos S, Tizabi Y, Moratalla R (2018) Striatal Reinnervation process after acute methamphetamine-induced dopaminergic degeneration in mice. Neurotox Res 34:627–639CrossRefGoogle Scholar
  24. Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7:103–124CrossRefGoogle Scholar
  25. Hall ED, Andrus PK, Oostveen JA, Althaus JS, VonVoigtlander PF (1996) Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 742:80–88CrossRefGoogle Scholar
  26. Hametner EM, Seppi K, Poewe W (2012) Role and clinical utility of pramipexole extended release in the treatment of early Parkinson’s disease. Clin Interv Aging 7:83–88Google Scholar
  27. He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553CrossRefGoogle Scholar
  28. Herrando-Grabulosa M, Casas C, Aguilera J (2013) The C-terminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. J Neurochem 124:36–44CrossRefGoogle Scholar
  29. Herreros J, Lalli G, Schiavo G (2000) C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J 347(Pt 1):199–204CrossRefGoogle Scholar
  30. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein Iba1. Brain Res Mol Brain Res 57:1–9CrossRefGoogle Scholar
  31. Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376CrossRefGoogle Scholar
  32. Jaykaran (2010) “Mean ± SEM” or “mean (SD)”? Indian J Pharmacol 42:329CrossRefGoogle Scholar
  33. Joyce JN, Woolsey C, Ryoo H, Borwege S, Hagner D (2004) Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson’s disease, and downregulates the dopamine transporter via the D3 receptor. BMC Biol 2:22CrossRefGoogle Scholar
  34. Kim MK, Park HS, Cho JH, Kim GS, Won C (2015) Pramipexole protects dopaminergic neurons through paraplegin against 6-hydroxydopamine. Neuroreport 26:74–80CrossRefGoogle Scholar
  35. Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259–277CrossRefGoogle Scholar
  36. Kissa K, Mordelet E, Soudais C, Kremer EJ, Demeneix BA, Brûlet P, Coen L (2002) In vivo neuronal tracing with GFP-TTC gene delivery. Mol Cell Neurosci 20:627–637CrossRefGoogle Scholar
  37. Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11:431–437CrossRefGoogle Scholar
  38. Larsen KE, Benn SC, Ay I, Chian RJ, Celia SA, Remington MP, Bejarano M, Liu M, Ross J, Carmillo P, Sah D, Phillips KA, Sulzer D, Pepinsky RB, Fishman PS, Brown RH, Francis JW (2006) A glial cell line-derived neurotrophic factor (GDNF): tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res 1120:1–12CrossRefGoogle Scholar
  39. Le WD, Jankovic J, Xie W, Appel SH (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm (Vienna) 107:1165–1173CrossRefGoogle Scholar
  40. Li J, Chian RJ, Ay I, Kashi BB, Celia SA, Tamrazian E, Pepinsky RB, Fishman PS, Brown RH, Francis JW (2009) Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS. Biochem Biophys Res Commun 390:947–951CrossRefGoogle Scholar
  41. Lieberknecht V, Cunha MP, Junqueira SC, Coelho ID, de Souza LF, Dos Santos AR, Rodrigues AL, Dutra RC, Dafre AL (2017) Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behav Brain Res 320:365–373CrossRefGoogle Scholar
  42. Luis-Ravelo D, Estevez-Silva H, Barroso-Chinea P, Afonso-Oramas D, Salas-Hernandez J, Rodriguez-Nunez J, Acevedo-Arozena A, Marcellino D, Gonzalez-Hernandez T (2018) Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease. Exp Neurol 299:137–147CrossRefGoogle Scholar
  43. Martinez-Lazcano JC, Montes S, Sanchez-Mendoza MA, Rodriguez-Paez L, Perez-Neri I, Boll MC, Campos-Arroyo HD, Rios C, Perez-Severiano F (2014) Sub-chronic copper pretreatment reduces oxidative damage in an experimental Huntington’s disease model. Biol Trace Elem Res 162:211–218CrossRefGoogle Scholar
  44. McCabe K, Concannon RM, McKernan DP, Dowd E (2017) Time-course of striatal Toll-like receptor expression in neurotoxic, environmental and inflammatory rat models of Parkinson's disease. J Neuroimmunol 310:103–106CrossRefGoogle Scholar
  45. Mendieta L, Granado N, Aguilera J, Tizabi Y, Moratalla R (2016) Fragment C domain of tetanus toxin mitigates methamphetamine neurotoxicity and its motor consequences in mice. Int J Neuropsychopharmacol 19:pyw021CrossRefGoogle Scholar
  46. Mendieta L, Venegas B, Moreno N, Patricio A, Martinez I, Aguilera J, Limon ID (2009) The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+)-lesions. Neurosci Res 65:98–106CrossRefGoogle Scholar
  47. Mendieta L, Bautista E, Sanchez A, Guevara J, Herrando-Grabulosa M, Moran J, Martinez R, Aguilera J, Limon ID (2012) The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine. Neurosci Res 74:156–167CrossRefGoogle Scholar
  48. Miana-Mena FJ, Muñoz MJ, Ciriza J, Soria J, Brûlet P, Zaragoza P, Osta R (2003) Fragment C tetanus toxin: a putative activity-dependent neuroanatomical tracer. Acta Neurobiol Exp (Wars) 63:211–218Google Scholar
  49. Miana-Mena FJ, Muñoz MJ, Roux S, Ciriza J, Zaragoza P, Brûlet P, Osta R (2004) A non-viral vector for targeting gene therapy to motoneurons in the CNS. Neurodegener Dis 1:101–108CrossRefGoogle Scholar
  50. Moreno-Igoa M, Calvo AC, Penas C, Manzano R, Olivan S, Munoz MJ, Mancuso R, Zaragoza P, Aguilera J, Navarro X, Osta Pinzolas R (2010) Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J Mol Med (Berl) 88:297–308CrossRefGoogle Scholar
  51. Mullin S, Schapira A (2015) The genetics of Parkinson’s disease. Br Med Bull 114:39–52CrossRefGoogle Scholar
  52. Ovsepian SV, O'Leary VB, Ntziachristos V, Dolly JO (2016) Circumventing brain barriers: nanovehicles for retroaxonal therapeutic delivery. Trends Mol Med 22:983–993CrossRefGoogle Scholar
  53. Ovsepian SV, Ovespian SV, Bodeker M, O'Leary VB, Lawrence GW, Oliver Dolly J (2015) Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments. Brain Struct Funct 220:1825–1838CrossRefGoogle Scholar
  54. Perez-Severiano F, Montes S, Geronimo-Olvera C, Segovia J (2013) Study of oxidative damage and antioxidant systems in two Huntington’s disease rodent models. Methods Mol Biol 1010:177–200CrossRefGoogle Scholar
  55. Perreault MC, Bernier AP, Renaud JS, Roux S, Glover JC (2006) C fragment of tetanus toxin hybrid proteins evaluated for muscle-specific transsynaptic mapping of spinal motor circuitry in the newborn mouse. Neuroscience 141:803–816CrossRefGoogle Scholar
  56. Picconi B, Hernandez LF, Obeso JA, Calabresi P (2017) Motor complications in Parkinson’s disease: striatal molecular and electrophysiological mechanisms of dyskinesias. Mov DisordGoogle Scholar
  57. Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590CrossRefGoogle Scholar
  58. Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10:53CrossRefGoogle Scholar
  59. Radenovic L, Selakovic V, Olivan S, Calvo AC, Rando A, Janac B, Osta R (2014) Neuroprotective efficiency of tetanus toxin C fragment in model of global cerebral ischemia in Mongolian gerbils. Brain Res Bull 101:37–44CrossRefGoogle Scholar
  60. Reichelt D, Radad K, Moldzio R, Rausch WD, Reichmann H, Gille G (2016) Comparable neuroprotective effects of pergolide and pramipexole on ferrous sulfate-induced dopaminergic cell death in cell culture. CNS Neurol Disord Drug Targets 15:1325–1332CrossRefGoogle Scholar
  61. Roux S, Colasante C, Saint Cloment C, Barbier J, Curie T, Girard E, Molgó J, Brûlet P (2005) Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Mol Cell Neurosci 30:572–582CrossRefGoogle Scholar
  62. Sadeghi H, Parishani M, Akbartabar Touri M, Ghavamzadeh M, Jafari Barmak M, Zarezade V, Delaviz H, Sadeghi H (2017) Pramipexole reduces inflammation in the experimental animal models of inflammation. Immunopharmacol Immunotoxicol 39:80–86CrossRefGoogle Scholar
  63. Sanchez-Gonzalez A, Mendieta L, Palafox V, Candalija A, Luna F, Aguilera J, Limon ID (2014) The restorative effect of intramuscular injection of tetanus toxin C-fragment in hemiparkinsonian rats. Neurosci Res 84:1–9CrossRefGoogle Scholar
  64. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787CrossRefGoogle Scholar
  65. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766CrossRefGoogle Scholar
  66. Schwab ME, Suda K, Thoenen H (1979) Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82:798–810CrossRefGoogle Scholar
  67. Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167CrossRefGoogle Scholar
  68. Sinha K, Box M, Lalli G, Schiavo G, Schneider H, Groves M, Siligardi G, Fairweather N (2000) Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Mol Microbiol 37:1041–1051CrossRefGoogle Scholar
  69. Smith Y, Wichmann T, Factor SA, DeLong MR (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37:213–246CrossRefGoogle Scholar
  70. Sozbilen MC, Ozturk M, Kaftan G, Dagci T, Ozyalcin H, Armagan G (2018) Neuroprotective effects of C-terminal domain of tetanus toxin on rat brain against motorneuron damages after experimental spinal cord injury. Spine (Phila Pa 1976) 43:E327–E333Google Scholar
  71. Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324CrossRefGoogle Scholar
  72. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25CrossRefGoogle Scholar
  73. Taravini IR, Larramendy C, Gomez G, Saborido MD, Spaans F, Fresno C, González GA, Fernández E, Murer MG, Gershanik OS (2016) Contrasting gene expression patterns induced by levodopa and pramipexole treatments in the rat model of Parkinson's disease. Neuropharmacology 101:576–589CrossRefGoogle Scholar
  74. Toivonen JM, Oliván S, Osta R (2010) Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2:2622–2644CrossRefGoogle Scholar
  75. von Bartheld CS (2004) Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. J Neurobiol 58:295–314CrossRefGoogle Scholar
  76. Watanabe Y, Matsuba T, Nakanishi M, Une M, Hanajima R, Nakashima K (2018) Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration. BMC Biotechnol 18:39CrossRefGoogle Scholar
  77. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349CrossRefGoogle Scholar
  78. Zou L, Xu J, Jankovic J, He Y, Appel SH, Le W (2000) Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett 281:167–170CrossRefGoogle Scholar
  79. Zucca FA, Segura-Aguilar J, Ferrari E, Munoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Felipe Patricio
    • 1
  • Irving Parra
    • 2
  • Isabel Martínez
    • 2
  • Francisca Pérez-Severiano
    • 3
  • Sergio Montes
    • 3
  • José Aguilera
    • 4
  • Ilhuicamina Daniel Limón
    • 1
  • Yousef Tizabi
    • 5
  • Liliana Mendieta
    • 2
    Email author
  1. 1.Laboratorio de Neurofarmacología, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Laboratorio de Neuroquímica, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco SuárezMexico CityMexico
  4. 4.Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
  5. 5.Department of PharmacologyHoward University College of MedicineWashingtonUSA

Personalised recommendations