Neurotoxicity Research

, Volume 35, Issue 1, pp 260–270 | Cite as

Malfunctioning of Chaperone-Mediated Autophagy in Parkinson’s Disease: Feats, Constraints, and Flaws of Modulators

  • Manish Kumar Tripathi
  • Charul Rajput
  • Saumya Mishra
  • Mohd Sami ur Rasheed
  • Mahendra Pratap SinghEmail author


Homeostatic regulation of class II programmed cell death/autophagy for the degradation and elimination of substandard organelles and defective proteins is decisive for the survival of dopaminergic neurons. Chaperone-mediated autophagy (CMA), one of the most highly dedicated self-sacrificing events, is accountable for the partial elimination of redundant soluble cytoplasmic proteins in Parkinson’s disease (PD). CMA is characterized by the selective delivery of superfluous protein containing lysine-phenylalanine-glutamate-arginine-glutamine (KFERQ)/KFERQ-like motif to the lysosome through molecular chaperones, such as heat shock cognate-70 (Hsc-70). KFERQ/KFERQ-like motif present in the poor quality cytoplasmic substrate protein and Hsc-70 complex is recognized by a janitor protein, which is referred to as the lysosome-associated membrane protein-2A (LAMP-2A). This protein is known to facilitate an entry of substrate-chaperone complex in the lumen for hydrolytic cleavage of substrate and elimination of end-products. Impaired CMA is repeatedly blamed for an accumulation of surplus soluble proteins. However, it is still an enigma if CMA is a bonus or curse for PD. Case-control studies and cellular and animal models have deciphered the contribution of impaired CMA in PD. Current article updates the role of CMA in toxicant models and recapitulates the evidences that have highlighted a link between impaired CMA and PD. Although PD is an irreversible happening and CMA is a dual edging phenomenon, it is anticipated that fine-tuning of the latter encounters the former to a certain extent. Besides, the truth, embellishment, and propaganda regarding the issue are also emphasized in the final segment of the article.


Parkinson’s disease Chaperone-mediated autophagy Toxicant models Parkinsonism 



Manish Kumar Tripathi, Charul Rajput, Saumya Mishra, and Mohd Sami ur Rasheed are grateful to the Department of Biotechnology, Government of India (GoI), Council of Scientific and Industrial Research (GoI), University Grants Commission (GoI), and Department of Science and Technology (GoI), respectively. The CSIR-IITR communication number of this article is 3532.

Funding Information

Science and Engineering Research Board (SERB) (GoI) is acknowledged for providing the financial support (Project Reference No.: EMR/2016/005041) to Mahendra Pratap Singh.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114(13):2491–2499PubMedGoogle Scholar
  2. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472PubMedCrossRefGoogle Scholar
  3. Ambrosi G, Ghezzi C, Zangaglia R, Levandis G, Pacchetti C, Blandini F (2015) Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson’s disease cells. Neurobiol Dis 82:235–242PubMedCrossRefGoogle Scholar
  4. Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E, Cuervo AM (2013) Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol 9(6):374–382PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bourdenx M, Daniel J, Genin E, Soria FN, Blanchard-Desce M, Bezard E, Dehay B (2016) Nanoparticles restore lysosomal acidification defects: implication for Parkinson and other lysosomal-related diseases. Autophagy 12(3):472–483PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cai Z, Zeng W, Tao K, E Z, Wang B, Yang Q (2015) Chaperone-mediated autophagy: roles in neuroprotection. Neurosci Bull 31(4):452–458PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chaanine AH, Gordon RE, Nonnenmacher M, Kohlbrenner E, Benard L, Hajjar RJ (2015) High-dose chloroquine is metabolically cardiotoxic by inducing lysosomes and mitochondria dysfunction in a rat model of pressure overload hypertrophy. Physiol Rep 3(7):e12413PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cuervo AM, Mann L, Bonten EJ, d’Azzo A, Dice JF (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22(1):47–59PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cuervo AM, Terlecky SR, Dice JF, Knecht E (1994) Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J Biol Chem 269(42):26374–26380PubMedGoogle Scholar
  10. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104PubMedCrossRefGoogle Scholar
  11. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295PubMedCrossRefGoogle Scholar
  12. Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, Matsumoto M, Sakai N (2012) Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int 60(4):431–442PubMedCrossRefGoogle Scholar
  13. Dong Z, Wolfer DP, Lipp HP, Büeler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11(1):80–88PubMedCrossRefGoogle Scholar
  14. Ebrahimi-Fakhari D, Saidi L, Wahlster L (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun 1(1):79PubMedPubMedCentralCrossRefGoogle Scholar
  15. Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13(3):137–145PubMedCrossRefGoogle Scholar
  16. Finn PF, Mesires NT, Vine M, Dice JF (2005) Effects of small molecules on chaperone-mediated autophagy. Autophagy 1(3):141–145PubMedCrossRefGoogle Scholar
  17. Gong Z, Tasset I, Diaz A, Anguiano J, Tas E, Cui L, Kuliawat R, Liu H, Kühn B, Cuervo AM, Muzumdar R (2018) Humanin is an endogenous activator of chaperone-mediated autophagy. J Cell Biol 217(2):635–647PubMedPubMedCentralCrossRefGoogle Scholar
  18. Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15(5):767–776PubMedCrossRefGoogle Scholar
  19. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kermer P, Köhn A, Schnieder M, Lingor P, Bähr M, Liman J, Dohm CP (2015) BAG1 is neuroprotective in in vivo and in vitro models of Parkinson’s disease. J Mol Neurosci 55(3):587–595PubMedCrossRefGoogle Scholar
  21. Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15(11):4829–4840PubMedPubMedCentralCrossRefGoogle Scholar
  22. Klaver AC, Coffey MP, Aasly JO, Loeffler DA (2018) CSF lamp2 concentrations are decreased in female Parkinson’s disease patients with LRRK2 mutations. Brain Res 1683:12–16PubMedCrossRefGoogle Scholar
  23. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2:a008888PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 11(1):211–213PubMedCrossRefGoogle Scholar
  25. Li W, Zhu J, DOU J, She H, Tao K, Xu H, Yang Q, Mao Z (2017) Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun 8:1763PubMedPubMedCentralCrossRefGoogle Scholar
  26. Liu S, Cui B, Dai ZX, Shi PK, Wang ZH, Guo YY (2016) Long non-coding RNA HOTAIR promotes Parkinson’s disease induced by MPTP through up-regulating the expression of LRRK2. Curr Neurovasc Res 13(2):115–120PubMedCrossRefGoogle Scholar
  27. Mader BJ, Pivtoraiko VN, Flippo HM, Klocke BJ, Roth KA, Mangieri LR, Shacka JJ (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3(12):1063–1072PubMedPubMedCentralCrossRefGoogle Scholar
  28. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2435–2444PubMedCrossRefGoogle Scholar
  29. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285(18):13621–13629PubMedPubMedCentralCrossRefGoogle Scholar
  30. Marin C, Aguilar E (2011) In vivo 6-OHDA-induced neurodegeneration and nigral autophagic markers expression. Neurochem Int 58(4):521–526PubMedCrossRefGoogle Scholar
  31. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788PubMedPubMedCentralGoogle Scholar
  32. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A 103(15):5805–5810PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mcneill A, Magalhaes J, Shen C, Chau KY, Hughes D, Mehta A, Foltynie T, Cooper JM, Abramov AY, Gegg M, Schapira AH (2014) Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137:1481–1495PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP (2017) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33(2):377–387PubMedCrossRefGoogle Scholar
  35. Mishra AK, Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP (2015) Aberrant autophagy and parkinsonism: does correction rescue from disease progression? Mol Neurobiol 51(3):893–908PubMedCrossRefGoogle Scholar
  36. Moors TE, Hoozemans JJ, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, van de Berg WD (2017) Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol Neurodegener 12(1):11PubMedPubMedCentralCrossRefGoogle Scholar
  37. Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T, Halliday GM (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov Disord 30:1639–1647PubMedCrossRefGoogle Scholar
  38. Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, Cooper A, Garner B, Halliday GM (2014) Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137:834–848PubMedPubMedCentralCrossRefGoogle Scholar
  39. Noelker C, Lu L, Höllerhage M, Vulinovic F, Sturn A, Roscher R, Höglinger GU, Hirsch EC, Oertel WH, Alvarez-Fischer D, Andreas H (2015) Glucocerebrosidase deficiency and mitochondrial impairment in experimental Parkinson disease. J Neurol Sci 356(1–2):129–136PubMedCrossRefGoogle Scholar
  40. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406PubMedPubMedCentralCrossRefGoogle Scholar
  41. Park HK, Cho AR, Lee SC, Ban JY (2012) MPTP-induced model of Parkinson’s disease in heat shock protein 70.1 knockout mice. Mol Med Rep 5(6):1465–1468PubMedGoogle Scholar
  42. Patel B, Cuervo AM (2015) Methods to study chaperone-mediated autophagy. Methods 75:133–140PubMedPubMedCentralCrossRefGoogle Scholar
  43. Patel S, Singh V, Kumar A, Gupta YK, Singh MP (2006) Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb- and paraquat-induced Parkinson’s disease phenotype in mouse: mechanism of neurodegeneration. Brain Res 1081(1):9–18PubMedCrossRefGoogle Scholar
  44. Richter F, Fleming SM, Watson M, Lemesre V, Pellegrino L, Ranes B, Zhu C, Mortazavi F, Mulligan CK, Sioshansi PC, Hean S, De La Rosa K, Khanna R, Flanagan J, Lockhart DJ, Wustman BA, Clark SW, Chesselet MF (2014) A GCase chaperone improves motor function in a mouse model of synucleinopathy. Neurotherapeutics 11:840–856PubMedPubMedCentralCrossRefGoogle Scholar
  45. Roodveldt C, Bertoncini CW, Andersson A, van der Goot AT, Hsu ST, Fernández-Montesinos R, de Jong J, van Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/alpha-synuclein complex by hip. EMBO J 28(23):3758–3770PubMedPubMedCentralCrossRefGoogle Scholar
  46. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635PubMedCrossRefGoogle Scholar
  47. Sala G, Arosio A, Stefanoni G, Melchionda L, Riva C, Marinig D, Brighina L, Ferrarese C (2013) Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition. Biomed Res Int 2013:846725PubMedPubMedCentralCrossRefGoogle Scholar
  48. Sala G, Marinig D, Arosio A, Ferrarese C (2016a) Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson’s disease. Front Mol Neurosci 9:157PubMedPubMedCentralCrossRefGoogle Scholar
  49. Sala G, Marinig D, Riva C, Arosio A, Stefanoni G, Brighina L, Formenti M, Alberghina L, Colangelo AM, Ferrarese C (2016) Rotenone down-regulates HSPA8/hsc70 chaperone protein in vitro: a new possible toxic mechanism contributing to Parkinson’s disease. Neurotoxicology 54:161–169PubMedCrossRefGoogle Scholar
  50. Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP (2012) Melatonin as a neuroprotective agent in the rodent models of Parkinson’s disease: is it all set to irrefutable clinical translation? Mol Neurobiol 45(1):186–199PubMedCrossRefGoogle Scholar
  51. Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS (2003) Cyclin dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(23):13650–13655PubMedPubMedCentralCrossRefGoogle Scholar
  52. Su C, Yang X, Lou J (2016) Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res 1644:98–106PubMedCrossRefGoogle Scholar
  53. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283(35):23542–23556PubMedPubMedCentralCrossRefGoogle Scholar
  54. Wang AM, Morishima Y, Clapp KM, Peng HM, Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2010) Inhibition of Hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J Biol Chem 285(21):15714–15723PubMedPubMedCentralCrossRefGoogle Scholar
  55. Wang B, Abraham N, Gao G, Yang Q (2016) Dysregulation of autophagy and mitochondrial function in Parkinson’s disease. Transl Neurodegener 5:19PubMedPubMedCentralCrossRefGoogle Scholar
  56. Wang G, Mao Z (2014) Chaperone-mediated autophagy: roles in neurodegeneration. Transl Neurodegener 3:20PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wang X, Zhai H, Wang F (2017) 6-OHDA induces oxidation of F-box protein Fbw7β by chaperone-mediated autophagy in Parkinson’s model. Mol Neurobiol 55:4825–4833. PubMedCrossRefGoogle Scholar
  58. Xilouri M, Brekk OR, Polissidis A, Chrysanthou-Piterou M, Kloukina I, Stefanis L (2016) Impairment of chaperone-mediated autophagy induces dopaminergic neurodegeneration in rats. Autophagy 12(11):2230–2247PubMedPubMedCentralCrossRefGoogle Scholar
  59. Xilouri M, Stefanis L (2015) Chaperone mediated autophagy to the rescue: a new-fangled target for the treatment of neurodegenerative diseases. Mol Cell Neurosci 66:29–36PubMedCrossRefGoogle Scholar
  60. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, Kirik D, Stefanis L (2013) Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 136(7):2130–2146PubMedCrossRefGoogle Scholar
  61. Xu CY, Kang WY, Chen YM, Jiang TF, Zhang J, Zhang LN, Ding JQ, Liu J, Chen SD (2017) DJ-1 inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front Aging Neurosci 27(9):308CrossRefGoogle Scholar
  62. Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP (2012) Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson’s disease pathogenesis. Mol Neurobiol 46(2):495–512PubMedCrossRefGoogle Scholar
  63. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z (2009) Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323(5910):124–127PubMedPubMedCentralCrossRefGoogle Scholar
  64. Yang R, Gao G, Mao Z, Yang Q (2016) Chaperone-mediated autophagy and mitochondrial homeostasis in Parkinson’s disease. Parkinsons Dis 2016:2613401PubMedPubMedCentralGoogle Scholar
  65. Zhang L, Sun Y, Fei M, Tan C, Wu J, Zheng J, Tang J, Sun W, Lv Z, Bao J, Xu Q, Yu H (2014) Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization. Autophagy 10(6):1015–1035PubMedPubMedCentralCrossRefGoogle Scholar
  66. Zhang Y, Long H, Zhou F, Zhu W, Ruan J, Zhao Y, Lu Y (2017) Echinacoside’s nigrostriatal dopaminergic protection against 6-OHDA-induced endoplasmic reticulum stress through reducing the accumulation of Seipin. J Cell Mol Med 21(12):3761–3775PubMedPubMedCentralCrossRefGoogle Scholar
  67. Zhu G, Wang X, Wu S, Li X, Li Q (2014) Neuroprotective effects of Puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease model in mice. Phytother Res 28:179–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment GroupCSIR-Indian Institute of Toxicology Research (CSIR-IITR)LucknowIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR CampusLucknowIndia

Personalised recommendations