Skip to main content

Advertisement

Log in

Chlorogenic Acid Prevents AMPA-Mediated Excitotoxicity in Optic Nerve Oligodendrocytes Through a PKC and Caspase-Dependent Pathways

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In the CNS, including the optic nerve, oligodendrocytes play a critical role in the myelination of axons. Oligodendrocytes are exceptionally sensitive to insults to the CNS, such as injury, ischemia, or inflammation, which result in the loss of oligodendrocytes and myelin and eventually secondary axon degeneration. Oligodendrocytes are sensitive to excitotoxic insults mediated by overactivation of their AMPA ionotropic glutamate receptors. Phenolic compounds, which are widely distributed in fruits and vegetables, received the great attention of scientists due to their antioxidant activities and free radical scavenging abilities. Chlorogenic acid (CGA) has been demonstrated to possess potent neuroprotective activities against oxidative stress in various cellular models and pathological conditions. Hence, CGA protect against oxidative stress and excitotoxic insults mediated by AMPA receptors and that the protective mechanisms involve free radical scavenging, Ca2+ handling in the cytosol, and modulating antioxidant enzyme system. CGA was associated with the protein kinase A (PKC) signaling pathways transduction. Caspases and calpains have been studied as apoptotic mediators and cell death in this model of AMPA toxicity. Inhibitors of caspases initiators, caspases 1, 8, and 9, the upstream of caspase 3 effectors, have totally abrogated the protective activity of CGA. Inhibitors of calpains also totally abrogated the protective activity of CGA. In addition, a potential role for the CGA in inhibiting Bax in oligodendrocyte cell model undergoing AMPA is inducing excitotoxic death. Our results indicate that CGA exhibits a protective potential via antioxidant and apoptosis caspases and calpains dependent against AMPA-mediated excitotoxicity, and these finding indicate that CGA is able to be a good candidate for preventive approach for neurodegenerative disorders associated with loss and damage in oligodendrocytes and AMPA-mediated excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CGA:

Chlorogenic acid

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionate

NMDA:

N-methyl-D-aspartate

ROS:

Reactive oxygen species

CNS:

Central nervous system

SNP:

System nervous peripheral

Trolox:

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

DCF:

Dichlorofluorescein

FDA:

Fluorescein diacetate

H2O2 :

Hydrogen peroxide

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

MAPK:

Mitogen apoptotic protein kinase

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DCF:

2′,7′-dichlorofluorescein

PBS:

Phosphate-buffered saline

CAT:

Catalase

SOD:

Superoxide dismutase

DMSO:

Dimethyl sulfoxide

HBSS:

Hank’s balanced salt solution

EDTA:

Ethylenediaminetetraacetic acid

DNA:

Deoxyribonucleic acid

ALS:

Amyotrophic lateral sclerosis

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alberdi E, Sanchez-Gomez MV, Marino A, Matute C (2002) Ca2+influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol Dis 92:234–243

    Article  CAS  Google Scholar 

  • Alkon DL, Sun MK, Nelson TJ (2007) PKC signalling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends Pharmacol Sci 28:51–60

    Article  CAS  PubMed  Google Scholar 

  • Almazon G, Mckay R, Cohen R (1999) Cyclic APMA regulates PDGF-stimulated signal transduction and differentiation of an immortalized optic-nerve-derived cell line. J Exp Biol 202:461–473

    Google Scholar 

  • Andjelkovic M, Van J, Camp B, De Meulenaer G, Depaemelaere G, Cocaciu C, Verloo M, Verhe R (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31

    Article  CAS  Google Scholar 

  • Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Battaini F (2001) Protein kinase C isoforms as therapeutic targets in nervous system disease states. Pharmacol Res 44(5):353–361

    Article  CAS  PubMed  Google Scholar 

  • Bevers MB, Neumar RW, Cereb J (2008) Mechanistic role of calpains in postischemic neurodegeneration. Blood Flow Metab 28:655–673

  • Blandini F, Greenamyre JT, Nappi G (1996) The role of glutamate in the pathophysiology of Parkinson’s disease. Funct Neurol 11:3–15

    CAS  PubMed  Google Scholar 

  • Brown JE, Khodr H, Hider RC, Rice-Evans C (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330(3):1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt AM, Pugh M, Hubbard P, James G (2004) Functions of optic nerve glia: axoglial signalling in physiology and pathology. Eye 18:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Campos-Esparza MR, Sanchez-Gomez LV, Matute C (2009) Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 45:358–368

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wu K, Knox R (2000) Structure-function studies of DT-diaphorase (NQO1) and NRH:quinone oxidoreductase (NQO2). Free Radic Biol Med 29:276–284

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17(2):83–93

    Article  CAS  PubMed  Google Scholar 

  • Dai SM, Shan ZZ, Nakamura H (2006) Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum 54:818–831

    Article  CAS  PubMed  Google Scholar 

  • Dailey A, Dailey H (2002) Identification of [2Fe-2S] clusters in microbial ferrochelatases. J Bacteriol 184(9):2460–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Fazzaro A, Xiang C, Korsmeyer SJ, Jacquin MF, McDonald JW (2003) Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J Neurosci 23:8682–8691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos MD, Almeida MC, Lopes NP, De Souza G (2006) Evaluation of the antiinflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull 29:2236–2240

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw XC, Martins LM, Kaufmann (1999) Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  • Fantuzzi G, Zheng H, Faggini R, Benigni F, Ghezzi P, Sipe JD, Shaw AR, Dinarello CA (1996) Effect of endotoxin in IL-1b-deficient mice. J Immunol 157:291–296

    CAS  PubMed  Google Scholar 

  • Foley S, Navaratnam S, McGarvey DJ, Land EJ, Truscott TG, Rice-Evans CA (1999) Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radic Biol Med 26:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Grosso G, Stepaniak U, Topor-Madry R, Szafraniec K, Pajak A (2014) Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 30:1398–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu C, Cassaccia-Bonnefil P, Srinivasan A, Chao MV (1999) Oligodendrocyte apoptosis mediated by caspase activation. J Neurosci 19:3043–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1998) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Ibarretexe G, Sanchez-Gomez, Campos-Esparza MR (2006) Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia 53:201–211

    Article  Google Scholar 

  • Kim J, Lee S, Shim J, Kim HW, Kim J, Young JJ, Yang H, Park J, Choi SH, Yoon JH, Lee KW, Lee HJ (2012) Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenicacid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem Int 60:466–474

    Article  CAS  PubMed  Google Scholar 

  • Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Park YI, Lee CK, Lee YB, Lee SY, Jang CG (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via antiacetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649:210–217

    Article  CAS  PubMed  Google Scholar 

  • Leardi A, Caraglia M, Selleri C, Pepe S, Pizzi C, Notaro R, Fabbrocini A, de Lorenzo S, MusicÒ M, Abbruzzese A, Bianco AR, Tagliaferri P (1998) Desferioxamine increases iron depletion and apoptosis induced by ara-C of human myeloid leukaemic cells. Br J Haematol 102:746–752

    Article  CAS  PubMed  Google Scholar 

  • Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 59(1):33–78

    Article  CAS  PubMed  Google Scholar 

  • Li P, Allen H, Banerjee S, Franklin S, Herzog L, Jonston C, Mcdowell J, Paskind M, Rodan L, Salfeld J, Tracey D, Wardwell S, Wei FY, Wong W, Seshardi T (1995) Mice deficient in IL-1b-converting enzyme are defective in production of mature IL-1b and resistant to endotoxic shock. Cell 80:401–411

    Article  CAS  PubMed  Google Scholar 

  • Liochev SI, Fridovich I (1999) Superoxide and iron: partners in crime. IUBMB Life 48(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Maher PJ (2001) How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. J Neurosci 21(9):2929–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  CAS  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signalling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domerq M, Perez-Cerda F, Perez-Samarin A, Sanchez-Gomez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    Article  CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Sánchez-Gómez MV, Pérez-Samartín A, Rodríguez-Antigüedad A, Pérez-Cerdá F (2007) Excitotoxic damage to white matter. J Anat 210(6):693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCord JM, Boyle JA, Day ED, Rizzolo L, Salin ML (1977) In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide dismutases. Academic Press, London, pp 129–138

    Google Scholar 

  • Mikami Y, Yamazawa T (2015) Chlorogenic acid, a polyphenol in coffee, protects neurons against glutamate neurotoxicity. Life Sci 139:69–74

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in autoxidation of epinephrine and a simple assay for SOD. J Biol Chem 247:3170–3317

    CAS  PubMed  Google Scholar 

  • Nagata S (1997) Apoptosis from death factor. Cell 85:355–365

    Article  Google Scholar 

  • Naveeda M, Hejazic V, Abbasa M, Kambohd AA, Khane GJ, Shumzaidf M, Ahmadg F, Babazadehh D, Fangi XF, Modarresi-Ghazanij F, Huab LH, Xiao Hui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67

    Article  CAS  Google Scholar 

  • Ness JK, Scaduto RC Jr, Wood TL (2004) IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in O4+ oligodendrocyte progenitors. Glia 46:183–194

    Article  PubMed  Google Scholar 

  • Pang Y, Zheng B, Fan LW, Rhodes PG, Cai Z (2007) IGF-1 protects oligodendrocyte progenitors against TNFα-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia 55:1099–1107

    Article  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Rebai O, Belkhir M, Sanchez Gomez MV, Matute C, Fattouch S, Amri M (2017) Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem Res 38(9)

  • Rice-Evans CA, Miller NJ, Bolwell PG, Broacgay PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller JM, Paganga G (1996) Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Robinson KM, Janes MS, Pechar M, Monette JS, RRoss MF, Hagen TM (2006) Selective imaging of super oxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruvolo PP, Deng X, Carr BK, May WS (1998) A functional role for mitochondrial protein kinase in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 273:25436–25442

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Gómez MV, Matute C (1999) AMPA and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiol Dis 6(6):475–485

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Gomez MV, Alberdi E, Ibarretxe G, Torre I, Matute C (2003) Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J Neurosci 23:9519–9528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Gomez MV, Alberdi E, Perez-Navarro E, Alberch J, Matute C (2011) Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. J Neurosci 31:2996–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol. Pharm 3:554–561

    Article  Google Scholar 

  • Simonishvili S, Jain MR, Li H, Levison SW, Wood TL (2013) Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia–ischemia. ASN Neuro 5(5):e00131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    Article  CAS  PubMed  Google Scholar 

  • Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    Article  CAS  PubMed  Google Scholar 

  • Szwajgier D, Borowiec K, Pustelniak K (2017a) The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9:477

    Article  PubMed Central  Google Scholar 

  • Szwajgier D, Borowiec K, Pustelniak K (2017b) The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9:477

    Article  PubMed Central  Google Scholar 

  • Thornberry NA, Lazebnik Y (2008) Caspases: enemies within. Science 281:1312–1316

    Article  Google Scholar 

  • Van Acker SA, van den Berg DJ, Tromp MN et al (1996) Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20(3):331–342

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Steinhauser S (2000) Ion channels in glial cells. Brain Res 32:380–412

    Article  CAS  Google Scholar 

  • Voss OP, Milne S, Sharkey J, O’Neill MJ, McCulloch J (2007) Molecular mechanisms of neurite growth with AMPA receptor potentiation. Neuropharmacology 52:590–597

    Article  CAS  PubMed  Google Scholar 

  • Welch KD, Davis TZ, Aust SD (2002) Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators. Arch Biochem Biophys 397:360–369

    Article  CAS  PubMed  Google Scholar 

  • Wu JM, Chen HX, Li H, Tang Y, Yang L, Cao SS, Qin DL (2016) Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules 21(3):260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim MBH, Riederer P (2003) Iron in normal and pathological brain diseases. In: Smith B, Adleman G (eds) Encyclopedia of neuroscience. Elsevier, Amsterdam

  • Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, Tjønneland A, Kyro C, Fagherazzi G, Boutron-Ruault MC et al (2016) Dietary polyphenol intake in Europe: the European prospective investigation into cancer and nutrition (EPIC) study. Eur J Nutr 55:1359–1375

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Manji HK (2008) The role of AMPA receptor modulation in the treatment of neuropsychiatric diseases. Exp Neurol 211(1):7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of falconoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Matute Carlos and Sanchez-Gomez Maria Victoria as well as all the members of the Departamento de Neurociencias, Facultad de Medicina y Odontologia, Universidad Del Paıs Vasco, Leioa, Vizcaya, Spain, for their supportive advices.

Funding

This work was supported by the Research Unit 00-UR-08-01University of Sciences Tunis and by a grant from the Tunisian Ministry of Higher Education and Scientific Research Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Rebai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebai, O., Amri, M. Chlorogenic Acid Prevents AMPA-Mediated Excitotoxicity in Optic Nerve Oligodendrocytes Through a PKC and Caspase-Dependent Pathways. Neurotox Res 34, 559–573 (2018). https://doi.org/10.1007/s12640-018-9911-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9911-5

Keywords

Navigation