Advertisement

Neurotoxicity Research

, Volume 34, Issue 4, pp 870–877 | Cite as

Neurotoxins as Preclinical Models for Parkinson’s Disease

  • Juan Segura-Aguilar
Review

Abstract

Translational medicine is one of the major concerns in this century. While significant advances have been made with scientific knowledge, the translation of their promising results has not led to any new therapies. In Parkinson’s disease, a long list of clinical studies, based on preclinical models with exogenous neurotoxins, has failed. Therefore, the aim of this opinion paper is to open discussion about preclinical models for Parkinson’s disease based on neurotoxins.

Keywords

Parkinson’s disease Dopamine Preclinical models Neurotoxins Translational medicine Clinical studies Aminochrome MPTP 6-Hydroxydopamine Rotenon Neurodegeneration 

Notes

Funding Information

This opinion paper is supported by FONDECYT 1170033.

References

  1. Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez MT (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25(4):795–803.  https://doi.org/10.1007/s10534-012-9525-y CrossRefPubMedGoogle Scholar
  2. Arriagada C, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16(2):468–477.  https://doi.org/10.1016/j.nbd.2004.03.014 CrossRefPubMedGoogle Scholar
  3. Athauda D, Foltynie T (2015) The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 11:25–40CrossRefGoogle Scholar
  4. Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40(5):1305–1313.  https://doi.org/10.1007/s00726-011-0851-0 CrossRefPubMedGoogle Scholar
  5. Beal MF, Matthews RT, Tieleman A, Shults CW (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice coenzyme Q10. Brain Res 783(1):109–114.  https://doi.org/10.1016/S0006-8993(97)01192-X CrossRefPubMedGoogle Scholar
  6. Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA, Rosenthal A, Hefti F (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373(6512):339–341.  https://doi.org/10.1038/373339a0 CrossRefPubMedGoogle Scholar
  7. Béraud D, Hathaway HA, Trecki J, Chasovskikh S, Johnson DA, Johnson JA, Federoff HJ, Shimoji M, Mhyre TR, Maguire-Zeiss KA (2013) Microglial activation and antioxidant responses induced by the Parkinson’s disease protein α-synuclein. J NeuroImmune Pharmacol 8(1):94–117.  https://doi.org/10.1007/s11481-012-9401-0 CrossRefPubMedGoogle Scholar
  8. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306CrossRefGoogle Scholar
  9. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282(21):15597–15605.  https://doi.org/10.1074/jbc.M610893200 CrossRefPubMedGoogle Scholar
  10. Bowenkamp KE, Hoffman AF, Gerhardt GA, Henry MA, Biddle PT, Hoffer BJ, Granholm AC (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 355(4):479–489.  https://doi.org/10.1002/cne.903550402 CrossRefPubMedGoogle Scholar
  11. Boza-Serrano A, Reyes JF, Rey NL, Leffler H, Bousset L, Nilsson U, Brundin P, Venero JL, Burguillos MA, Deierborg T (2014) The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathol Commun 2:156PubMedPubMedCentralGoogle Scholar
  12. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211.  https://doi.org/10.1016/S0197-4580(02)00065-9 CrossRefPubMedGoogle Scholar
  13. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134.  https://doi.org/10.1007/s00441-004-0956-9 CrossRefGoogle Scholar
  14. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82(3):615–624.  https://doi.org/10.1046/j.1471-4159.2002.00990.x CrossRefPubMedGoogle Scholar
  15. Briceño A, Muñoz P, Brito P, Huenchuguala S, Segura-Aguilar J, Paris IB (2016) Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin. Neurotox Res 29(3):381–393.  https://doi.org/10.1007/s12640-015-9560-x CrossRefPubMedGoogle Scholar
  16. Chen L, Xie Z, Turkson S, Zhuang X (2015) A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci 35(3):890–905.  https://doi.org/10.1523/JNEUROSCI.0089-14.2015 CrossRefPubMedGoogle Scholar
  17. Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, Wille EJ, Beal MF (2008) Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem 104(6):1613–1621.  https://doi.org/10.1111/j.1471-4159.2007.05097.x CrossRefPubMedGoogle Scholar
  18. Costa S, Iravani MM, Pearce RK, Jenner P (2001) Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur J Pharmacol 412(1):45–50.  https://doi.org/10.1016/S0014-2999(00)00933-X CrossRefPubMedGoogle Scholar
  19. Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276(7):374–379.  https://doi.org/10.1056/NEJM196702162760703 CrossRefGoogle Scholar
  20. Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of parkinsonism chronic treatment with Ldopa. N Engl J Med 1969(280):337–345CrossRefGoogle Scholar
  21. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295.  https://doi.org/10.1126/science.1101738 CrossRefGoogle Scholar
  22. Cuevas C, Huenchuguala S, Muñoz P, Villa M, Paris I, Mannervik B, Segura-Aguilar J (2015) Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity. Neurotox Res 27(3):217–228.  https://doi.org/10.1007/s12640-014-9500-1 CrossRefPubMedGoogle Scholar
  23. Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal 24(376):391Google Scholar
  24. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88(2):494–501CrossRefGoogle Scholar
  25. Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY, Araujo GD, Pinheiro AS, Domont GB, Eliezer D (2015) Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of α-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 290(46):27660–27679.  https://doi.org/10.1074/jbc.M115.686584 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line—an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20(5):776–783.  https://doi.org/10.1021/tx600325u CrossRefPubMedGoogle Scholar
  27. Gan-Or Z, Dion PA, Rouleau GA (2015) Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy 11(9):1443–1457.  https://doi.org/10.1080/15548627.2015.1067364 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gash DM, Zhang Z, Cass WA, Ovadia A, Simmerman L, Martin D, Russell D, Collins F, Hoffer BJ, Gerhardt GA (1995) Morphological and functional effects of intranigrally administered GDNF in normal rhesus monkeys. J Comp Neurol 363(3):345–358.  https://doi.org/10.1002/cne.903630302 CrossRefGoogle Scholar
  29. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252–255.  https://doi.org/10.1038/380252a0 CrossRefGoogle Scholar
  30. Goldstein DS, Kopin IJ, Sharabi Y (2014) Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 144(3):268–282.  https://doi.org/10.1016/j.pharmthera.2014.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grondin R, Zhang Z, Yi A, Cass WA, Maswood N, Andersen AH, Elsberry DD, Klein MC, Gerhardt GA, Gash DM (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125:2191–2201CrossRefGoogle Scholar
  32. Grünblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111(12):1543–1573.  https://doi.org/10.1007/s00702-004-0212-1 CrossRefGoogle Scholar
  33. Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, Cron RQ, Shacka JJ, Raman C, Standaert DG (2013) MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33(23):9592–9600.  https://doi.org/10.1523/JNEUROSCI.5610-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hattori N, Mizuno Y (2017) Twenty years since the discovery of the parkin gene. J Neural Transm (Vienna) 124(9):1037–1054.  https://doi.org/10.1007/s00702-017-1742-7 CrossRefGoogle Scholar
  35. Hauser DN, Dukes AA, Mortimer AD, Hastings TG (2013) Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med 65:419–427CrossRefGoogle Scholar
  36. Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt D (2015) Preladenant as an adjunctive therapy with levodopa in Parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol 72(12):1491–1500.  https://doi.org/10.1001/jamaneurol.2015.2268 CrossRefPubMedGoogle Scholar
  37. Hawkes CH, Del Tredici K, Braak H (2010) A timeline for Parkinson’s disease. Parkinsonism Relat Disord 16(2):79–84.  https://doi.org/10.1016/j.parkreldis.2009.08.007 CrossRefPubMedGoogle Scholar
  38. Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 139(Suppl 1):59–74.  https://doi.org/10.1111/jnc.13593 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Herrera A, Muñoz P, Paris I, Díaz-Veliz G, Mora S, Inzunza J, Hultenby K, Cardenas C, Jaña F, Raisman-Vozari R, Gysling K, Abarca J, Steinbusch HW, Segura-Aguilar J (2016) Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson’s disease. Cell Mol Life Sci 73(18):3583–3597.  https://doi.org/10.1007/s00018-016-2182-5 CrossRefPubMedGoogle Scholar
  40. Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J (2017) Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chem Neurosci 8(4):702–711.  https://doi.org/10.1021/acschemneuro.7b00034 CrossRefPubMedGoogle Scholar
  41. Herrera-Soto A, Díaz-Veliz G, Mora S, Muñoz P, Henny P, Steinbusch HWM, Segura-Aguilar J (2017) On the role of DT-diaphorase inhibition in aminochrome-induced neurotoxicity in vivo. Neurotox Res 32(1):134–140.  https://doi.org/10.1007/s12640-017-9719-8 CrossRefPubMedGoogle Scholar
  42. Hodgson RA, Bedard PJ, Varty GB, Kazdoba TM, Di Paolo T, Grzelak ME, Pond AJ, Hadjtahar A, Belanger N, Gregoire L, Dare A, Neustadt BR, Stamford AW, Hunter JC (2010) Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 225(2):384–390.  https://doi.org/10.1016/j.expneurol.2010.07.011 CrossRefPubMedGoogle Scholar
  43. Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin LF, Gerhardt GA (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182(1):107–111.  https://doi.org/10.1016/0304-3940(94)90218-6 CrossRefGoogle Scholar
  44. Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10(4):618–630.  https://doi.org/10.4161/auto.27720 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Huenchuguala S, Muñoz P, Graumann R, Paris I, Segura-Aguilar J (2016) DT-diaphorase protects astrocytes from aminochrome-induced toxicity. Neurotoxicology 55:10–12.  https://doi.org/10.1016/j.neuro.2016.04.014 CrossRefPubMedGoogle Scholar
  46. Huenchuguala S, Muñoz P, Segura-Aguilar J (2017) The importance of mitophagy in maintaining mitochondrial function in U373MG cells. Bafilomycin A1 restores aminochrome-induced mitochondrial damage. ACS Chem Neurosci 8(10):2247–2253.  https://doi.org/10.1021/acschemneuro.7b00152 CrossRefPubMedGoogle Scholar
  47. Investigators (2015) Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. The Lancet Neurol 14:979CrossRefGoogle Scholar
  48. Iravani MM, Costa S, Jackson MJ, Tel BC, Cannizzaro C, Pearce RK, Jenner P (2001) GDNF reverses priming for dyskinesia in MPTP-treated, L-DOPA-primed common marmosets. Eur J Neurosci 13(3):597–608.  https://doi.org/10.1046/j.1460-9568.2001.01408.x CrossRefGoogle Scholar
  49. Jellinger KA (2010) Critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 67(4):550.  https://doi.org/10.1002/ana.21638 CrossRefPubMedGoogle Scholar
  50. Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326.  https://doi.org/10.1111/ane.12563 CrossRefPubMedGoogle Scholar
  51. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11(11):1214–1221.  https://doi.org/10.1038/nm1314 CrossRefPubMedGoogle Scholar
  52. Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin (2013) Inflammation and α-synuclein’s prion-like behavior in Parkinson’s disease—is there a link? Mol Neurobiol 47(2):561–574.  https://doi.org/10.1007/s12035-012-8267-8 CrossRefPubMedGoogle Scholar
  53. Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC (2014) Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Comp Neurol 473:97–106CrossRefGoogle Scholar
  54. Lin MK, Farrer MJ (2014) Genetics and genomics of Parkinson’s disease. Genome Med 6(6):48.  https://doi.org/10.1186/gm566 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M (2015) Current disease modifying approaches to treat Parkinson’s disease. Cell Mol Life Sci 73:1365–1379CrossRefGoogle Scholar
  56. Lozano J, Muñoz P, Nore BF, Ledoux S, Segura-Aguilar J (2010) Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chem Res Toxicol 23(9):1492–1496.  https://doi.org/10.1021/tx100182a CrossRefPubMedGoogle Scholar
  57. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, DC W, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788.  https://doi.org/10.1172/JCI32806 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157(1):142–149.  https://doi.org/10.1006/exnr.1999.7049 CrossRefPubMedGoogle Scholar
  59. Muñoz P, Segura-Aguilar J (2016) Commentary: a humanized clinically calibrated quantitative systems pharmacology model for hypokinetic motor symptoms in Parkinson’s disease. Front Pharmacol 7:179CrossRefGoogle Scholar
  60. Muñoz P, Segura-Aguilar J (2017a) Why we cannot translate successful results to new therapies in Parkinson’s disease. Clin Pharmacol Transl Med 1:6–13Google Scholar
  61. Muñoz PS, Segura-Aguilar J (2017b) DT-diaphorase protects against autophagy induced by aminochrome-dependent alpha-synuclein oligomers. Neurotox Res.  https://doi.org/10.1007/s12640-017-9747-4 CrossRefGoogle Scholar
  62. Muñoz P, Paris I, Sanders LH, Greenamyre JT, Segura-Aguilar J (2012a) Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochim Biophys Acta 1822(7):1125–1136.  https://doi.org/10.1016/j.bbadis.2012.03.010 CrossRefPubMedGoogle Scholar
  63. Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012b) Dopamine oxidation and autophagy. Parkinsons Dis 2012:920953PubMedPubMedCentralGoogle Scholar
  64. Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-Diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145(1):37–47.  https://doi.org/10.1093/toxsci/kfv016 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Muñoz P, Paris I, Segura-Aguilar J (2016) Commentary: evaluation of models of Parkinson’s disease. Front Neurosci 10:161PubMedPubMedCentralGoogle Scholar
  66. Naughton C, Moriarty N, Feehan J, O’Toole D, Dowd E (2016) Differential pattern of motor impairments in neurotoxic, environmental and inflammation-driven rat models of Parkinson’s disease. Behav Brain Res 296:451–458.  https://doi.org/10.1016/j.bbr.2015.09.025 CrossRefPubMedGoogle Scholar
  67. Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH (2015) Trophic factors for Parkinson’s disease: to live or let die. Mov Disord 30(13):1715–1724.  https://doi.org/10.1002/mds.26426 CrossRefGoogle Scholar
  68. Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18(1):82–92.  https://doi.org/10.1007/s12640-009-9148-4 CrossRefPubMedGoogle Scholar
  69. Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121(2):376–388.  https://doi.org/10.1093/toxsci/kfr060 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Park A, Stacy M (2015) Disease-modifying drugs in Parkinson’s disease. Drugs 75(18):2065–2071.  https://doi.org/10.1007/s40265-015-0497-4 CrossRefPubMedGoogle Scholar
  71. Parkinson Study Group QE3 Investigators, Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, Haas R, Juncos JL6, Nutt JG, Voss TS, Ravina B, Shults CM, Helles K, Snively V, Lew MF, Griebner B, Watts A, Gao S, Pourcher E, Bond L, Kompoliti K, Agarwal P, Sia C, Jog M, Cole L, Sultana M, Kurlan R, Richard I,Deeley C, Waters CH, Figueroa A, Arkun A1, Brodsky M, Ondo WG, Hunter CB, Jimenez-Shahed J, Palao A, Miyasaki JM, So J, Tetrud J, Reys L, Smith K, Singer C, Blenke A, Russell DS, Cotto C, Friedman JH, Lannon M, Zhang L, Drasby E, Kumar R, Subramanian T, Ford DS, Grimes DA, Cote D, Conway J, Siderowf AD, Evatt ML, Sommerfeld B, Lieberman AN, Okun MS, Rodriguez RL, Merritt S, Swartz CL, Martin WR, King P, Stover N, Guthrie S, Watts RL, Ahmed A, Fernandez HH, Winters A, Mari Z, Dawson TM, Dunlop B, Feigin AS, Shannon B, Nirenberg MJ, Ogg M1, Ellias SA, Thomas CA, Frei K, Bodis-Wollner I, Glazman S, Mayer T, Hauser RA, Pahwa R, Langhammer A, Ranawaya R, Derwent L, Sethi KD, Farrow B, Prakash R, Litvan I, Robinson A, Sahay A, Gartner M, Hinson VK, Markind S, Pelikan M, Perlmutter JS54, Hartlein J, Molho E, Evans S, Adler CH, Duffy A, Lind M, Elmer L, Davis K, Spears J, Wilson S, Leehey MA, Hermanowicz N,Niswonger S, Shill HA, Obradov S, Rajput A, Cowper M, Lessig S, Song D, Fontaine D, Zadikoff C, Williams K, Blindauer KA, Bergholte J, Propsom CS, Stacy MA, Field J, Mihaila D, Chilton M, Uc EY, Sieren J, Simon DK, Kraics L, Silver A, Boyd JT, Hamill RW, Ingvoldstad C, Young J, Thomas K, Kostyk SK, Wojcieszek J, Pfeiffer RF, Panisset M, Beland M, Reich SG, Cines M, Zappala N, Rivest J, Zweig R, Lumina LP, Hilliard CL, Grill S, Kellermann M, Tuite P, Rolandelli S, Kang UJ, Young J, Rao J, Cook MM, Severt L, Boyar K (2014) A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol 71:543–552Google Scholar
  72. Parkkinen L, Pirttilä T, Alafuzoff I (2008) Applicability of current staging/categorization of a-synuclein pathology and their clinical relevance. Acta Neuropathol 115(4):399–407.  https://doi.org/10.1007/s00401-008-0346-6 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Perfeito R, Lázaro DF, Outeiro TF, Rego AC (2014) Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 62:51–59.  https://doi.org/10.1016/j.mcn.2014.08.002 CrossRefGoogle Scholar
  74. Pinna A, Ko WK, Costa G, Tronci E, Fidalgo C, Simola N, Li Q, Tabrizi MA, Bezard E, Carta M, Morelli M (2016) Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord 31(4):501–511.  https://doi.org/10.1002/mds.26475 CrossRefPubMedGoogle Scholar
  75. Qin H, Buckley JA, Li X, Liu Y, Fox TH III, Meares GP, Yu H, Yan Z, Harms AS, Li Y, Standaert DG, Benveniste EN (2016) Inhibition of theJAK/STAT pathway protects against α-Synuclein-induced Neuroinflammation and dopaminergic neurodegeneration. J Neurosci 36(18):5144–5159.  https://doi.org/10.1523/JNEUROSCI.4658-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Quinn LP, Crook B, Hows ME, Vidgeon-Hart M, Chapman H, Upton N, Medhurst AD, Virley DJ (2008) The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson’s disease through inhibition of monoamine oxidase B. Br J Pharmacol 154(1):226–233.  https://doi.org/10.1038/bjp.2008.78 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Redenšek S, Trošt M, Dolžan V (2017) Genetic determinants of Parkinson’s disease: can they help to stratify the patients based on the underlying molecular defect? Front Aging Neurosci 10(9):20Google Scholar
  78. Rey NL, Wesson DW, Brundin P (2016) The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis 109(Pt B):226–248PubMedPubMedCentralGoogle Scholar
  79. Santos CC, Araújo FM, Ferreira RS, Silva VB, Silva JHC, Grangeiro MS, Soares ÉN, Pereira ÉPL, Souza CS, Costa SL, Segura-Aguilar J, Silva VDA (2017) Aminochrome induces microglia and astrocyte activation. Toxicol in Vitro 42:54–60.  https://doi.org/10.1016/j.tiv.2017.04.004 CrossRefPubMedGoogle Scholar
  80. Segura-Aguilar J (2015) A new mechanism for protection of dopaminergic neurons mediated by astrocytes. Neural Regen Res 10:1225–1227CrossRefGoogle Scholar
  81. Segura-Aguilar J (2017a) New preclinical model are required to discover neuroprotective compound in Parkinson’s disease. Pharmacol Res 119:490.  https://doi.org/10.1016/j.phrs.2016.11.034 CrossRefPubMedGoogle Scholar
  82. Segura-Aguilar J (2017b) Aminochrome as preclinical model for Parkinson’s disease. Oncotarget 8(28):45036–45037.  https://doi.org/10.18632/oncotarget.18353 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Segura-Aguilar J (2017c) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regen Res 12(6):897–901.  https://doi.org/10.4103/1673-5374.208560 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact 72(3):309–324.  https://doi.org/10.1016/0009-2797(89)90006-9 CrossRefPubMedGoogle Scholar
  85. Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129(6):898–915.  https://doi.org/10.1111/jnc.12686 CrossRefPubMedGoogle Scholar
  86. Segura-Aguilar J, Muñoz P, Paris I (2016a) Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson’s disease. Curr Med Chem 23(4):346–359.  https://doi.org/10.2174/0929867323666151223094103 CrossRefPubMedGoogle Scholar
  87. Segura-Aguilar J, Paris I, Muñoz P (2016b) The need of a new and more physiological preclinical model for Parkinson’s disease. Cell Mol Life Sci 73(7):1381–1382.  https://doi.org/10.1007/s00018-016-2140-2 CrossRefPubMedGoogle Scholar
  88. Shen J, Du T, Wang X, Duan C, Gao G, Zhang J, Lu L, Yang H (2014) α-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res 1591:14–26.  https://doi.org/10.1016/j.brainres.2014.09.046 CrossRefPubMedGoogle Scholar
  89. Spatola M, Wider C (2015) Genetics of Parkinson’s disease: the yield. Parkinsonism Relat Disord 1:S35–S38Google Scholar
  90. Stocchi F, Rascol O, Hauser RA, Huyck S, Tzontcheva A, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt DJ, Preladenant Early Parkinson Disease Study Group (2017) Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88:2198–2206CrossRefGoogle Scholar
  91. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A 97(22):11869–11874.  https://doi.org/10.1073/pnas.97.22.11869 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG (2016) MicroRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci 36(8):2383–2390.  https://doi.org/10.1523/JNEUROSCI.3900-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tse DC, McCreery RL, Adams RN (1976) Potential oxidative pathways of brain catecholamines. J Med Chem 19(1):37–40.  https://doi.org/10.1021/jm00223a008 CrossRefPubMedGoogle Scholar
  94. Valastro B, Dekundy A, Danysz W, Quack G (2009) Oral creatine supplementation attenuates L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Behav Brain Res 197(1):90–96.  https://doi.org/10.1016/j.bbr.2008.08.004 CrossRefPubMedGoogle Scholar
  95. Van der Perren A, Macchi F, Toelen J, Carlon MS, Maris M, de Loor H, Kuypers DR, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V (2015) FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an α-synuclein-based rat model for Parkinson’s disease. Neurobiol Aging 36(3):1559–1568.  https://doi.org/10.1016/j.neurobiolaging.2015.01.014 CrossRefPubMedGoogle Scholar
  96. Van Laar VS, Mishizen AJ, Cascio M, Hastings TG (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34(3):487–500.  https://doi.org/10.1016/j.nbd.2009.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Verstraeten A, Theuns J, Van Broeckhoven C (2015) Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 31(3):140–149.  https://doi.org/10.1016/j.tig.2015.01.004 CrossRefPubMedGoogle Scholar
  98. Wang T, Hay JC (2015) Alpha-synuclein toxicity i n the early secretory pathway: How It Drives neurodegeneration in Parkinsons disease. Front Neurosci 9(433)Google Scholar
  99. Wang B, Liu Q, Shan H, Xia C, Liu Z (2015) Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to α-synuclein in Drosophila. Biochem Cell Biol 93(4):351–358.  https://doi.org/10.1139/bcb-2015-0015 CrossRefPubMedGoogle Scholar
  100. Wang K, Huang J, Xie W, Huang L, Zhong C, Chen Z (2016) Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn Pathol 11(1):15.  https://doi.org/10.1186/s13000-016-0459-5 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Whitehead RE, Ferrer JV, Javitch JA, Justice JB (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76(4):1242–1251.  https://doi.org/10.1046/j.1471-4159.2001.00125.x CrossRefPubMedGoogle Scholar
  102. Williams A (1986) MPTP toxicity: clinical features. J Neural Transm Suppl 20:5–9PubMedGoogle Scholar
  103. Winkler C, Sauer H, Lee CS, Bjorklund A (1996) Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 16(22):7206–7215CrossRefGoogle Scholar
  104. Writing Group for the NINDS Exploratory Trials in Parkinson Disease (NET-PD) Investigators, Kieburtz K, Tilley BC, Elm JJ et al (2015) Effect of creatine monohydrate on clinical progression in patients with Parkinson disease. A Randomized Clinical Trial. JAMA 313:584–593CrossRefGoogle Scholar
  105. Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280(2):285–295.  https://doi.org/10.1016/j.taap.2014.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Xu Y, Stokes AH, Roskoski R Jr, Vrana KE (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54(5):691–697.  https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<691::AID-JNR14>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  107. Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70(3):1079–1086.  https://doi.org/10.1124/mol.106.024703 CrossRefPubMedGoogle Scholar
  108. Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, Ito S, Fariello R, Gallorini M (2002) The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm 109(5-6):663–672.  https://doi.org/10.1007/s007020200055 CrossRefPubMedGoogle Scholar
  109. Zhang H, Liu J, Wang X, Duan C, Wang X, Yang H (2016) V63 and N65 of overexpressed α-synuclein are involved in mitochondrial dysfunction. Brain Res 1642:308–318.  https://doi.org/10.1016/j.brainres.2016.04.002 CrossRefPubMedGoogle Scholar
  110. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119.  https://doi.org/10.1016/j.pneurobio.2015.09.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular and Clinical Pharmacology, Faculty of MedicineUniversity of ChileSantiagoChile

Personalised recommendations