Skip to main content
Log in

Thioperamide, an H3 Receptor Antagonist Prevents [3H]Glucose Uptake in Brain of Adult Rats Lesioned as Neonates with 5,7-Dihydroxytryptamine

  • Brief Communication
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

As a first attempt at exploring an association between histaminergic and serotoninergic neuronal phenotypes in glucose regulation, the influence of the histamine H3 receptor antagonist thioperamide on glucose uptake by brain was determined in rats in which the serotoninergic innervations of brain was largely destroyed perinatally. Male Wistar rats were initially treated on the 3rd day after birth with the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (75 μg icv) or saline vehicle (10 μl icv). At 8 weeks lesioned and control rats were terminated in order to validate the effectiveness of 5,7-DHT: reduction in 5-HT and 5-HIAA by 83–91% and 69–83% in striatum, frontal cortex, and hippocampus (HPLC/ED method). Other groups of rats were pretreated with thioperamide (5.0 mg/kg ip) or saline vehicle 60 min prior to 6-[3H]-D-glucose (500 μCi/kg ip). Fifteen-min later rats were decapitated and brains were excised and dissected to remove frontal cortex, striatum, hippocampus, thalamus/hypothalamus, pons, and cerebellum. Liquid scintillation spectroscopy was used to determine that [3H]glucose uptake, which was enhanced in 5,7-DHT lesioned rats in cortex (by 88%), hippocampus, thalamus/hypothalamus, pons and cerebellum (each by 47–56%), and in striatum (by 35%). In contrast, thioperamide prevented the enhancement in [3H]glucose uptake in all brain regions of 5,7-DHT neonatally lesioned rats; and [3H]glucose levels were significantly different in all brain regions (except thalamus/hypothalamus) in thioperamide-versus saline-treated rats. These findings indicate a functional association between histaminergic and serotoninergic systems in brain in relation to glucose regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arrang JM, Goway M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302:812–817

    Article  Google Scholar 

  • Arrang JM, Gorbag M, Lancelot JC, Lacomite JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327:117–123

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG, Lachenmayer L (1972) 5,7-Dihydroxytryptamine: improvement in chemical lesioning of indoleamine neurons in the mammalian brain. Z Zellforsch Mikrosk Anat 135(3):399–414

    Article  PubMed  CAS  Google Scholar 

  • Brown RE, Stevans DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    Article  PubMed  CAS  Google Scholar 

  • Brus R, Kostrzewa RM, Perry KW, Fuller RW (1994) Supersensitization of the oral response to SKF 38393 in neonatal 6-hydroxydopamine-lesioned rats is eliminated by neonatal 5, 7-dihydroxytryptamine treatment. J Pharmacol Exp Ther 260:231–237

    Google Scholar 

  • Brus R, Plech A, Kostrzewa RM (1995a) Enhanced quinpirole response in rats lesioned neonatally with 5, 7-dihydroxytryptamine. Pharmacol Biochem Behav 50:649–653

    Article  PubMed  CAS  Google Scholar 

  • Brus R, Szkilnik R, Kostrzewa RM, Jędrusiak I, Konecki J, Głowacka M, Shani J (1995b) Modulation of glucose uptake in rat brain after administration of quinpirole and SKF-38393, two central dopamine receptor agonists. Pharmacol Comm 7:87–91

    CAS  Google Scholar 

  • Darves AS, Gudelski GA (2003) Injection of 5-HT2 receptors induces glycogenolysis in the rat brain. Eur J Pharmacol 464:135–140

    Article  Google Scholar 

  • Freo U, Riechieri GL, Holloway H, Soncrant TT (1992) Time- and dose-dependent effects of the serotoninergic agent quipazine on regional cerebral metabolism in rats. Brain Res 600:249–256

    Article  Google Scholar 

  • Goodchild RE, Curt JA, Hobson I, Piggot MA, Perry RH, Ince P, Jaros E, Perry EK (1999) Distribution of histamine H3-receptor binding in the normal human basal ganglia: comparison with Huntington’s and Parkinson’s disease cases. Eur J Neurosci 11:449–456

    Article  PubMed  CAS  Google Scholar 

  • Hommer D, Andreason P, Rio D, Williams W, Ruttimann U, Momenan R, Zametkin A, Rawlings R, Linnoila M (1997) Effect of m-chlorphenyepiperazine on regional brain glucose utilization: a positron emission subjects. J Neurosci 17:2796–2806

    PubMed  CAS  Google Scholar 

  • Hough LB (2001) Genomics meets histamine receptors: new subtypes, new receptors. Mol Pharmacol 59:415–419

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM (2001) Mechanism of action of 6-hydroxydopamine, a dopaminergic neurotoxin. In: Segura-Aguilar J (ed) Mechanisms of degeneration and protection of the dopaminergic system. FP Graham Publishing Co, Johnson City, pp 89–104

    Google Scholar 

  • Kostrzewa RM, Gong L, Brus R (1992) Serotonin (5-HT) system mediate dopamine (DA) receptor supersensitivity. Acta Neurobiol Exp 53:31–41

    Google Scholar 

  • Kwieciński A, Nowak P (2009) Effect of prenatal manganese intoxication on (3H)glucose uptake in the brain of rats lesioned as neonates with 6-hydroxydopamine. Pharmacol Rep 61:558–563

    PubMed  Google Scholar 

  • Leckin A, Jarvikyla M, Tuomisto L (1994) The effect of metoprine on glicoprivic feeding induced by 2-deoxy-D-glucose. Pharmacol Biochem Behav 49:853–857

    Article  Google Scholar 

  • Magnusson O, Nilsson LB, Westerland D (1980) Simultaneous determination of dopamine, DOPAC, and homovanillic acid. Direct injection of supernatants from brain tissue homogenates in a liquid chromatography—electrochemical detection system. J Chromatogr 221:237–247

    Article  PubMed  CAS  Google Scholar 

  • Molina PE, Williams P, Abumrad RN (1997) Histaminergic contribution to the metabolic agent of neuroglucopenia. Amer J Physiol 272:R1918–R1924

    PubMed  CAS  Google Scholar 

  • Molina-Hernández A, Nuñez A, Arias-Montaño JA (2000) Histamine H3 receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport 11:163–166

    Article  PubMed  Google Scholar 

  • Nishibori M, Itoh Y, Seaki K (1990) Effect of microinjection of histamine into the brain on plasma levels of epinephrine and glucose in freely moving rats. Jpn J Pharmacol 54:257–263

    Article  PubMed  CAS  Google Scholar 

  • Nonagaki K, Igucki A, Li X, Tamagawa T, Watanabe G, Hiyoski Y, Sakamoto N (1972) Role of brain - histamine H1 and H2 receptors in neostignine-induced hyperglycemia in rats. Life Sci 51:PL131–PL134

    Article  Google Scholar 

  • Nowak P, Dąbrowska J, Bortel A, Biedka I, Szczerbak G, Kostrzewa RM, Brus R (2006) Histamine H3 receptor agonist- and antagonist evoked vacous chewing movements in 6-OHDA-lesioned rats occurs in absence of change in microdialysate dopamine level. Eur J Pharmacol 552:46–54

    Article  PubMed  CAS  Google Scholar 

  • Nowak P, Szkilnik R, Korossy E, Noras Ł, Kostrzewa RM, Brus R (2008) Effect of histamine receptor antagonists on oral activity and stereotyped behaviors in neonatally 6-OHDA-lesioned rats (rodent model of Parkinson’s disease). Pharmacol Rep 60:288–289 abstract

    Google Scholar 

  • Nowak P, Jochem J, Szkilnik R, Korossy E, Drab J, Bojanek K, Kostrzewa RM, Brus R (2009a) Histaminergic activity in adult rats neonatally lesioned with neurotoxins: DSP-4, 5, 7-DHT and 6-OHDA (rodent model of Parkinson’s disease). Pharmacol Rep 61:376 abstract

    Google Scholar 

  • Nowak P, Noras Ł, Jochem J, Szkilnik R, Brus H, Kőrössy E, Drab J, Kostrzewa RM, Brus R (2009b) Histaminergic activity in a rodent model of Parkinson’s disease. Neurotox Res 15:246–251

    Article  PubMed  CAS  Google Scholar 

  • Panula P, Arratosinen MS, Pilvoca U, Kostiloinen E (1990) A histamine-containing neuronal system in human brain. Neuroscience 29:127–182

    Article  Google Scholar 

  • Ryn JH, Yanai R, Sakurai E, Kim CY, Watanabe T (1995) Ontogenic development of histamine receptor subtype demonstrated by quantitative autoradiography. Develop Brain Res 87:101–110

    Article  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M, Pollard H, Raut M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    PubMed  CAS  Google Scholar 

  • Tabatabie T, Dryhurst G (2001) Molecular mechanisms of action of 5, 6- and 5, 7-dihydroxytryptamine. In: Kostrzewa RM (ed) Highly selective neurotoxins. Basic and clinical application. Humana Press, Tatowa, pp 269–291

    Google Scholar 

  • Thurmond RL, Deais PJ, Durnford PF (2004) A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J Pharmacol Exp Ther 309:404–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Medical University of Silesia: KNW-1-001/08. The authors express their thanks to Mrs. U. Mikołajun and B. Mędrek for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Brus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jośko, J., Drab, J., Nowak, P. et al. Thioperamide, an H3 Receptor Antagonist Prevents [3H]Glucose Uptake in Brain of Adult Rats Lesioned as Neonates with 5,7-Dihydroxytryptamine. Neurotox Res 20, 93–96 (2011). https://doi.org/10.1007/s12640-010-9216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9216-9

Keywords

Navigation