Advertisement

Interaction of apigenin-7-O-glucoside with pyrimethamine against Toxoplasma gondii growth

  • Daniel A. AbugriEmail author
  • William H. Witola
Original Article
  • 5 Downloads

Abstract

Apigenin-7-O-glucoside, a flavonoid glucoside known to inhibit cancer cell growth, fungi growth, both intra and extracellular reactive oxygen species generation, causing cell arrest and damage to the plasma membrane, was tested alone or in combination with a dihydrofolate inhibitor (pyrimethamine) against Toxoplasma gondii (T. gondii) growth. The anti-T. gondii activity was carried out using a high throughput antiparasitic drug screening cell-based assay known as 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, monosodium salt (WST-8) and fluorescence plate reader. The 50% effective concentration inhibition and 95% confidence interval values for individual and combination treatments against T. gondii were 0.80 (0.38–1.29) µg/mL, 1.05 (0.275–2.029) µg/mL, and 0.40 (0–1.06) µg/mL for apigenin-7-O-glucoside, pyrimethamine, and apigenin-7-O-glucoside plus pyrimethamine, respectively. Interestingly, the apigenin-7-O-glucoside plus pyrimethamine combination showed an additive inhibition effect against T. gondii growth in vitro using the fractional inhibitory concentration index method. It was discovered that the apigenin-7-O-glucoside combination with pyrimethamine had a high selectivity index 62.5, which implies 62-fold inhibition activity against the parasite versus human foreskin fibroblast cell cytotoxicity. This new combination hit is novel and will have the potential for future effective, safe, and less costly anti-Toxoplasma drug development, if its in vivo activity shows similar findings.

Keywords

Drug combination Anti-toxoplasmosis Pyrimethamine Flavonoid glucoside 

Notes

Acknowledgements

We are truly grateful to Professor Emeritus Adriane G. Ludwick for her constructive comments that have improved the manuscript. In addition, the authors are thankful for the support of the RCMI core facility at Tuskegee University that was established with Grant Number G12MD007585-23 for supporting the cell-based assay acquisition.

Author contributions

Both DAA and WHW conceived the present idea reported in this paper. DAA carried out the laboratory work, perform the Graph pad Prism analysis, and drafted the first manuscript. WHM provided the cell lines and proofread the whole manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abugri DA, Tiimob BJ, Apalangya VA, Pritchett G, McElhenney WH (2013) Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication. Food Chem 138(1):718–723PubMedCrossRefGoogle Scholar
  2. Abugri DA, Witola WH, Jaynes JM, Toufic N (2016) In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii. Exp Parasitol 164:12–19PubMedCrossRefGoogle Scholar
  3. Abugri DA, Witola WH, Jaynes JM (2017) In vitro antagonistic and indifferent activity of combination of 3-deoxyanthocyanidins against Toxoplasma gondii. Parasitol Res 116(12):3387–3400PubMedCrossRefGoogle Scholar
  4. Abugri DA, Witola WH, Russell AE, Troy RM (2018) In vitro activity of the interaction between taxifolin (dihydroquercetin) and pyrimethamine against Toxoplasma gondii. Chem Biol Drug Des 91(1):194–201PubMedCrossRefGoogle Scholar
  5. Adeyemi OS, Sugi T, Han Y, Kato K (2018) Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents. Parasitol Res 117(2):355–363PubMedCrossRefGoogle Scholar
  6. Andrews KT, Fisher G, Skinner-Adams TS (2014) Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 4(2):95–111PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK (2009) Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem 44(9):3388–3393PubMedCrossRefGoogle Scholar
  8. Center for Disease and Control and Prevention (CDC) (2018), https://www.cdc.gov/parasites/npi/. Accessed 12 July 2018
  9. Choi W, Lee I (2018) Evaluation of anti-Toxoplasma gondii effect of ursolic acid as a novel toxoplasmosis inhibitor. Pharmaceuticals 11(2):43PubMedCentralCrossRefPubMedGoogle Scholar
  10. Choi W, Jiang M, Chu J (2013) Antiparasitic effects of Zingiber officinale (Ginger) extract against Toxoplasma gondii. J Appl Biomed 11(1):15–26CrossRefGoogle Scholar
  11. Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356CrossRefGoogle Scholar
  12. Dyer O (2015) Company reneges on promise to cut price of toxoplasmosis drug. BMJ 351:h6472PubMedCrossRefGoogle Scholar
  13. Emiliano YS, Almeida-Amaral EE (2018) Efficacy of apigenin and miltefosine combination therapy against experimental cutaneous leishmaniasis. J Nat Prod 81(8):1910–1913PubMedCrossRefGoogle Scholar
  14. Eumkeb G, Siriwong S, Thumanu K (2012a) Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J Photochem Photobiol B 117:247–253PubMedCrossRefGoogle Scholar
  15. Eumkeb G, Siriwong S, Phitaktim S, Rojtinnakorn N, Sakdarat S (2012b) Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J Appl Microbiol 112(1):55–64PubMedCrossRefGoogle Scholar
  16. Ferreira JF, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15(5):3135–3170PubMedPubMedCentralCrossRefGoogle Scholar
  17. Flegr J, Prandota J, Sovickova M, Israili ZH (2014) Toxoplasmosis- a global threat. Correlation of latent toxoplasmsosis with specific disease burden in a set of 88 countries. PLoS One 9(3):e90203PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fomovska A, Huang Q, El Bissati K, Mui EJ, Witola WH, Cheng G, Zhou Y, Sommerville C, Roberts CW, Bettis S, Prigge ST (2012) Novel N-benzoyl-2-hydroxybenzamide disrupts unique parasite secretory pathway. Antimicrob Agents Chemother 56(5):2666–2682PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ginouves M, Carme B, Couppie P, Prevot G (2014) Comparison of tetrazolium salts assays for evaluation of drug activity against Leishmania spp. J Clin Microbiol 52(6):2131–2138PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ginouvès M, Simon S, Nacher M, Demar M, Carme B, Couppié P, Prévot G (2017) In vitro sensitivity of cutaneous leishmania promastigote isolates circulating in French guiana to a set of drugs. Am J Trop Med Hyg 96(5):1143–1150PubMedPubMedCentralGoogle Scholar
  21. Gubbels MJ, Li C, Striepen B (2003) High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob Agents Chemother 47(1):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  22. Haverkos HW (1987) Assessment of therapy for toxoplasma encephalitis. Am J Med 82:907–914PubMedCrossRefGoogle Scholar
  23. Hughes JM, Colley DG, Lopez A, Dietz VJ, Wilson M, Navin TR, Jones JL (2000) Preventing congenital toxoplasmosis. MMWR Recomm Rep 49(RR-2):57–75Google Scholar
  24. Iqbal K, Jamal Q, Iqbal J, Afreen MS (2017) Luteolin as a potent anti-leishmanial agent against intracellular Leishmania tropica parasite. Trop J Pharm Res 16(2):337–342CrossRefGoogle Scholar
  25. Jeon YW, Suh YJ (2013) Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep 29(2):819–825PubMedCrossRefGoogle Scholar
  26. Khan AA, Slifer TR, Araujo FG, Remington JS (2001) Activity of gatifloxacin alone or in combination with pyrimethamine or gamma interferon against Toxoplasma gondii. Antimicrob Agents Chemother 45(1):48–51PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kumar D, Bhat ZA (2012) Anti-anxiety activity of methanolic extracts of different parts of Angelica archangelica Linn. J Tradit Complement Med 2:235–241PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lehane AM, Saliba KJ (2008) Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res Notes 1(1):26PubMedPubMedCentralCrossRefGoogle Scholar
  29. Li ZH, Li C, Szajnman SH, Rodriguez JB, Moreno SN (2017) Synergistic activity between statins and bisphosphonates against acute experimental toxoplasmosis. Antimicrob Agents Chemother 61(8):e02628-16PubMedPubMedCentralCrossRefGoogle Scholar
  30. McCarthy M (2015) Drug’s 5000% price rise puts spotlight on soaring US drug costs. BMJ 351:h5114PubMedCrossRefGoogle Scholar
  31. McFarland MM, Zach SJ, Wang X, Potluri LP, Neville AJ, Vennerstrom JL, Davis PH (2016) Review of experimental compounds demonstrating anti-toxoplasma activity. Antimicrob Agents Chemother 60(12):7017–7034PubMedPubMedCentralGoogle Scholar
  32. Mead JR, McNair N (2006) Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol Lett 259(1):153–157PubMedCrossRefGoogle Scholar
  33. Mirzaalizadeh B, Sharif M, Daryani A, Ebrahimzadeh MA, Zargari M, Sarvi S, Mehrzadi S, Rahimi MT, Mirabediny Z, Golpour M, Montazeri M (2018) Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol 192:6–11PubMedCrossRefGoogle Scholar
  34. Neville AJ, Zach SJ, Wang X, Larson JJ, Judge AK, Davis LA, Vennerstrom JL, Davis PH (2015) Clinically available medicines demonstrating anti-Toxoplasma activity. Antimicrob Agents Chemother 59:7161–7169PubMedPubMedCentralCrossRefGoogle Scholar
  35. Oz HS (2017) Fetomaternal and pediatric toxoplasmosis. J Pediatric Infect Dis Soc 12(04):202–208CrossRefGoogle Scholar
  36. Pillai S, Mahmud R, Lee WC, Perumal S (2012) Anti-parasitic activity of Myristica fragrans Houtt. essential oil against Toxoplasma gondii parasite. APCBEE Procedia 2:92–96CrossRefGoogle Scholar
  37. Powers JL, Zhang X, Kim CY, Abugri DA, Witola WH (2017) Activity of green algae extracts against Toxoplasma gondii. Med Aromat Plants (Los Angels) 6(293):2167-0412Google Scholar
  38. Prusky D, Keen NT (1993) Involvement of preformed antifungal compounds in the resistance of subtropical fruits to fungal decay. Plant Dis 77(2):114–119CrossRefGoogle Scholar
  39. Ravanel P, Creuzet S, Tissut M (1990) Inhibitory effect of hydroxyflavones on the exogenous NADH dehydrogenase of plant mitochondrial inner membranes. Phytochemistry 29(2):441–445CrossRefGoogle Scholar
  40. Sanfelice RA, da Silva SS, Bosqui LR, Miranda-Sapla MM, Barbosa BF, Silva RJ, Ferro EAV, Panagio LA, Navarro IT, Bordignon J, Conchon-Costa I (2017) Pravastatin and simvastatin inhibit the adhesion, replication and proliferation of Toxoplasma gondii (RH strain) in HeLa cells. Acta Trop 167:208–215PubMedCrossRefGoogle Scholar
  41. Siriwong S, Thumanu K, Hengpratom T, Eumkeb G (2015) Synergy and Mode of Action of Ceftazidime plus Quercetin or Luteolin on Streptococcus pyogenes. Evid Based Complement Alternat Med 2015:759459PubMedPubMedCentralCrossRefGoogle Scholar
  42. Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Vicentic JM, Popovic J, Grdadolnik SG, Markovic D, Sankovic-Babice S, Glamoclija J, Stevanovic M (2017) Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 16:795–807PubMedPubMedCentralGoogle Scholar
  43. Szajnman SH, Galaka T, Li ZH, Li C, Howell NM, Chao MN, Striepen B, Muralidharan V, Moreno SN, Rodriguez JB (2017) In vitro and in vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites. Antimicrob Agents Chemother 61(2):e01590-16PubMedPubMedCentralGoogle Scholar
  44. Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Rüedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50(4):1352–1364PubMedPubMedCentralCrossRefGoogle Scholar
  45. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M (1999) A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36(2):47–50CrossRefGoogle Scholar
  46. United States Department of Agriculture (USDA) (2018) Salmonella and Toxoplasma gondii are the most costliest foodborne pathogens. Accessed 1 Jan 2019Google Scholar
  47. Wang G, Gao M (2016) Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell. Asian Pac J Trop Med 9(1):63–66PubMedCrossRefGoogle Scholar

Copyright information

© Indian Society for Parasitology 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Laboratory of Ethnomedicine, Parasitology and Drug DiscoveryTuskegee UniversityTuskegeeUSA
  2. 2.Department of BiologyTuskegee UniversityTuskegeeUSA
  3. 3.Department of Pathobiology, College of Veterinary MedicineUniversity of IllinoisUrbana, ChampaignUSA

Personalised recommendations