Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Analysis of Double Gaussian Distribution at the Interface of Ni/Ta2O5/P-Si Schottky Barrier Diodes Using Temperature Dependent Current-Voltage (I-V) Measurements

  • 2 Accesses

Abstract

The electrical properties have been investigated for Ni/Ta2O5/p-Si Metal/insulator/semiconductor SBD in the temperature regime 175–400 K. The electrical parameters were analyzed using current-voltage characteristics as a function of operating temperature. It is observed that the Schottky barrier height increased whereas ideality factor and series resistance decreased with increasing the operating temperature. The characteristic temperature (To) value calculated from Norde and Cheung methods was compared. This analysis showed that To value extracted from both the techniques are in close agreement with each other. Experimental results revealed that the thermal coefficient was −4.5 mV/K. The Gaussian distribution of the barrier height was estimated from the plot of zero-bias barrier height (Φbo) versus 1/2kT plot and the estimated value of (Φbo) of 0.92 eV and 0.79 eV with standard deviation (σ0) of 0.023 V and 0.014 V, respectively. The mean BH and the Richardson constant values were determined using ln (Io/T2)-q2\( {\sigma}_0^2 \)/2(kT)2 versus 1000/T plot and were 0.89 eV and 0.76 eV and 30.03 and 26.85 A/cm−2 K−2, respectively. In addition to the thermionic emission process, two more conduction mechanisms such as Poole-Frenkel emission in the temperature regime 175–275 K and Schottky emission dominant beyond 300 K temperature were noticed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Peercy PS (2000). Nature 406:1023

  2. 2.

    Manchanda L, Morris MD, Green ML, Dover RWV, Klemens F, Sorsch TW, Silverman PJ, Wilk G, Busch B, Aravamudhan S (2001). Microelctron Eng 59:351

  3. 3.

    Atanassova E, Konakova RV, Mitin VF, Koprinarova J, Lytvym OS, Okhrimenko OB, Schinkarenko VV, Virovska D (2005). Microelectron Reliab 45:123

  4. 4.

    Cappellani A, Keddie JL, Barradas NP, Jackson SM (1999). Solid State Electron 43:1095

  5. 5.

    Yu J, Chen G, Li CX, Shafiei M, Ou JZ, du Plessis J, Kalantar-Zadeh K, Lai PT, Wlodarski W (2011). Sens Actuators A 172:9

  6. 6.

    Moldovan M, Weyant CM, Johnson DL, Faber KT (2004). J Thermal Spray Tech 13:51

  7. 7.

    Chaneliere C, Autran JL, Devine RAB, Balland B (1998). Mater Sci Eng R-R 22:269

  8. 8.

    Tepehan FZ, Ghodsi FE, Ozer N, Tepehan GG (1999). Sol Energy Mater Sol 59:265

  9. 9.

    Ushikubo T (2000). Catal Today 57:331

  10. 10.

    Wolf MJ, Roitsch S, Mayer J, Nijmeijer A, Bouwmeester HJM (2013). Thin Solid Films 527:354

  11. 11.

    Boughaba S, Sproule GI, McCaffery JP, Islam M, Graham MJ (2000). Thin Solid Films 358:104

  12. 12.

    Demircioglu O, Karatas S, Yıldırım N, Bakkaloglu OF, Turut A (2011). J Alloys Compd 509:6433

  13. 13.

    Sharma M, Tripathi SK (2012). J Appl Phys 112:024521

  14. 14.

    Osiris WG, Farag AAM, Yahia IS (2011). Synth Met 161:1079

  15. 15.

    Gullu O, Aydogan S, Turut A (2012). Solid State Commun 152:38113

  16. 16.

    Deniz AR, Caldiran Z, Metin O, Meral K, Aydogan S (2016). J Colloid Interface Sci 473:172

  17. 17.

    Reddy VR, Reddy NNK (2012). Superlattice Microst 52:484

  18. 18.

    Reddy NNK, Reddy VR (2010). Opto Electron Adv Mater Rapid Commun 4:1229

  19. 19.

    Reddy NNK, Ananda P, Verma VK, Bakash KR (2019). Surf Rev Lett1950073. https://doi.org/10.1142/S0218625X19500732

  20. 20.

    Gozeh BA, Karabulut A, Yildiz A, Yakuphanoglu F (2018). J Alloys Comp 732:16

  21. 21.

    Ameen BAH, Yildiz A, Farooq WA, Yakuphanoglu F (2019). Silicon 11:563

  22. 22.

    Gozeh BA, Karabulut A, Yildiz A, Dere A, Arif B, Yakuphanoglu F (2019). Silicon. https://doi.org/10.1007/s12633-019-00266-7

  23. 23.

    Gozeh BA, Karabulut A, Ammen MM, Yildiz A, Yakuphanoglu F (2019) Surf Rev Lett. https://doi.org/10.1142/S0218625X19501737

  24. 24.

    Jang SH, Jang JS (2013). Electron Mater Lett 9:245

  25. 25.

    Cheung SK, Cheung NW (1986). Appl Phys Lett 49:85

  26. 26.

    Buyukbas Ulusan A, Tataroglu A, Azizian-Kalandaragh Y, Altındal S (2018). J Mater Sci Mater Electron 29:159

  27. 27.

    Kaymak N, Efil E, Seven E, Tataroglu A, Bilge S, Oz Orhan E (2019). Mater Res Express 6:026309

  28. 28.

    Kumar R, Chand S (2015). Electron Mater Lett 11:973

  29. 29.

    Kumar A, Kumar A, Sharma KK, Chand S (2019). Superlattice Microst 128:373

  30. 30.

    Norde H (1979). J Appl Phys 50:5052

  31. 31.

    Reddy NNK, Godavarthi S, Kumar KM, Kummara VK, Vattikuti SVP, Akkera HS, Bitla Y, Jilani SAK, Manjunath V (2019). J Mater Sci:Mater Electron 30:8955

  32. 32.

    Hamdaoui N, Ajjel R, Salem B, Gendry M (2014). Mater Sci Semicond Process 26:431

  33. 33.

    Aydogan S, Saglam M, Turut A, Onganer Y (2009). Mater Sci Eng C 29:1486

  34. 34.

    Reddy NNK, Reddy VR (2012). Bull Mater Sci 35:53

  35. 35.

    Ozdemir AF, Turut A, Kokce A (2006). Semicond Sci Technol 21:298

  36. 36.

    Reddy NNK, Akkera HS, Sekhar MC, Uthanna S (2019). Silicon 11:159

  37. 37.

    Ganichev SD, Ziemann E, Prettl W, Yassievich IN, Istratov AA, Weber ER (2000). Phys Rev B 61:10361

  38. 38.

    Padovani FA, Stratton R (1966). Solid State Electron 9:695

Download references

Acknowledgements

The author Dr. N. Nanda Kumar Reddy thankfully acknowledges the financial support received from the Department of Science and Technology (DST), Science and Engineering Research Board, Government of India, Major Research Project No. ECR/2017/002868, DST-FIST Program-2015 (SR/FST/College-263) and MITS/TEQIP-II/FACULTY-SEED GRANT/16-17/20 & 19-20.

Dr. Chandramohan Kukkambakam thankfully acknowledge the financial support from MRP Project No. 6395/16 (SERO/UGC), the University Grants Commission (UGC), Government of India.

Author information

Correspondence to Nallabala Nanda Kumar Reddy or Vasudeva Reddy Minnam Reddy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reddy, N.N.K., Kukkambakam, C., Manjunath, V. et al. Analysis of Double Gaussian Distribution at the Interface of Ni/Ta2O5/P-Si Schottky Barrier Diodes Using Temperature Dependent Current-Voltage (I-V) Measurements. Silicon (2020). https://doi.org/10.1007/s12633-020-00407-3

Download citation

Keywords

  • MIS Schottky barrier diode
  • Series resistance
  • Ta2O5 dielectric layer
  • Double Gausssian Disribution