Advertisement

Silicon

pp 1–8 | Cite as

Nd:YAG Nanosecond Laser Pulses for Precipitation Silver Nanoparticles in Silicate Glasses: AC Conductivity and Dielectric Studies

  • A. A. MenazeaEmail author
  • A. M. Abdelghany
  • N. A. Hakeem
  • W. H. Osman
  • F. H. Abd El-kader
Original Paper

Abstract

Silicate glasses with chemical composition in mol%: (75 mol% SiO2–15 mol% Na2O-10 mol% Ca2O) doped by different ratios (x) of AgNo3, (x = 0.0, 0.1, 0.5 and 1.0) were successfully prepared by melting method. Silver nanoparticles (AgNPs) have been precipitated in the prepared glasses via Nd:YAG nanosecond laser irradiation pulses. The A.C. conductivity behavior and the dielectric properties such as; (dielectric constant (ε’) anddielectric loss (ε”)), AC conductivity (σac’ and σac”), electric modulus (M’ and M”) and electric impedance (Z’ and Z”) have been investigated as a function of frequency for the prepared glass samples in the frequency range; from 0.1 Hz to 10 MHz at room temperature. The AC conductivity is proportional to AgNO3 and increased as silver nanoparticles concentrations inside the silicate glass matrix increasing.

Keywords

Nd:YAG Nanosecond laser Ag nanoparticles Silicate glasses Dielectric properties A.C. Conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Ballato J, Ebendorff-Heidepriem H, Zhao J, Petit L, Troles J (2017) Glass and process development for the next generation of optical fibers: a review. Fibers 5(1):11.  https://doi.org/10.3390/fib5010011 CrossRefGoogle Scholar
  2. 2.
    Shukla DK, Mollah S, Kumar R (2007) Influence of TiO2and ZnO on the conductivity and dielectric properties of copper-bismuth glasses. J Appl Phys 101(1):013708CrossRefGoogle Scholar
  3. 3.
    Kumar S, Husain M, Zulfequar M (2007) Dielectric studies of tin based chalcogenide glasses. J Mater Sci 42:143–148CrossRefGoogle Scholar
  4. 4.
    Ahmad MM, Yousef ES, Moustafa ES (2006) Dielectric properties of the ternary TeO2/Nb2O5/ZnO glasses. Physica B:Condensed Matter 371:74–80CrossRefGoogle Scholar
  5. 5.
    Abdelghany AM, Bendary AA, Abou-El-Nasr TZ, Hassaan MY, Mostafa AG (2014) Electrical transport properties of some sodium silicate glasses containing by-pass cement dust. Nat Sci 12, 139(6)Google Scholar
  6. 6.
    Shaaban MH, Ali AA, El-Nimr MK (2006) The AC conductivity of tellurite glasses doped with Ho2O3. Mat Chem Phys 96:433CrossRefGoogle Scholar
  7. 7.
    Rejikumar PR, Jyothy PV, Mathew S, Thomas V, Unnikrishnan NV (2010) Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass. Physica B 405:1513–1517CrossRefGoogle Scholar
  8. 8.
    Li N, Li JH, Liu BX (2014) Glass forming abilities of the Fe–ta–(Zr, Ti) alloys studied by thermodynamic calculation and ion beam mixing. Appl Surf Sci 308:316–320CrossRefGoogle Scholar
  9. 9.
    Jmal N, Bouaziz J (2018) Fluorapatite-glass-ceramics obtained by heat treatment of a gel synthesized by the sol-gel processing method. Mater Lett 215:280–283CrossRefGoogle Scholar
  10. 10.
    Sonal A, Sharma SA (2018) Optical investigation of soda lime glass with buried silver nanoparticles synthesized by ion implantation. J Non-Crys Solids 485:57–65CrossRefGoogle Scholar
  11. 11.
    Zhang J, Dong W, Sheng J, Zheng J, Li J, Qiao L, Jiang L (2008) Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation. J Cryst Growth 310:234–239CrossRefGoogle Scholar
  12. 12.
    Striepe S, Deubener J (2013) Effect of lithium-to-magnesium ratio in metaphosphate glasses on crack-tip condensation and sub-critical crack growth. J Non-Cryst Solidsl 375:47–54CrossRefGoogle Scholar
  13. 13.
    Jimenez JA, Sendova M (2017) Catalyst role of Nd3+ ions for the precipitation of silver nanoparticles in phosphate glass. J Alloys Compd 691:44–50CrossRefGoogle Scholar
  14. 14.
    Shakhgildyan GY, Lipatiev AS, Vetchinnikov MP, Popova VV, Lotarev SV, Golubev NV, Ignateva ES, Presniakov MM, Sigaeva VN (2018) One-step micro-modification of optical properties in silver-doped zinc phosphate glasses by femtosecond direct laser writing. J Non-Cryst Solids 481:634–642CrossRefGoogle Scholar
  15. 15.
    Abd El-kader FH, Hakeem NA, Osman WH, Menazea AA, Abdelghany AM (2018) Nanosecond laser irradiation as new route for silver nanoparticles precipitation in glassy matrix. Silicon.  https://doi.org/10.1007/s12633-018-9890-4
  16. 16.
    Prasad PS, Raghavaiah BV, BalajiRao R, Laxmikanth C, Veeraiah N (2004) Dielectric dispersion in PbO-MoO3- B2O3 glasses. Solid State Commun 132:235–240CrossRefGoogle Scholar
  17. 17.
    Salman FE, Mekki A (2011) Dielectric study and ac conductivity of iron sodium silicate glasses. J Non-Cryst Solids 357(14):2658–2662CrossRefGoogle Scholar
  18. 18.
    Salman F (2013) Dielectric characteristics of CuO-Na2O-SiO2 glasses with cole-cole plots technique and ac conductivity study. Glass Phys Chem 39(2):150–154CrossRefGoogle Scholar
  19. 19.
    Abdelghany AM, Zeyada HM, ElBatal HA, Fetouh RE (2017) AC conductivity and dielectric behavior of Silicophosphate glass doped by Nd2O3. Silicon 9:347–354.  https://doi.org/10.1007/s12633-016-9498-52017.
  20. 20.
    Salman F, Khalil R, Hazaa H (2014) Dielectric Studies and Cole-Cole plot Analysis of Silver-ion conducting glasses. Access Int J 3(1):1Google Scholar
  21. 21.
    Hammad AH, Abdelghany AM (2016) Optical and structural investigations of zinc phosphate glasses containing vanadium ions. J Non-Cryst Solids 433:14–19CrossRefGoogle Scholar
  22. 22.
    Ouis MA, Azooz MA, ElBatal HA (2018) Optical and infrared spectral investigations of cadmium zinc phosphate glasses doped with WO3 or MoO3 before and after subjecting to gamma irradiation. J Non-Cryst Solids 494:31–39CrossRefGoogle Scholar
  23. 23.
    Abdelghany AM, ElBatal HA, ElBatal FH (2015) Spectral studies of silver ions in barium borate glass and effects of gamma irradiation, mid. East J of Appl Sci 5, 7(5)Google Scholar
  24. 24.
    El-bashar YH, Badr AM, Elshaikh HA, Mostafa AG, Ibrahim AM (2016) Dielectric and optical properties of CuO containing sodium zinc phosphate glasses. Int J Process Appl Ceram 10(4):277–286CrossRefGoogle Scholar
  25. 25.
    Yeriskin SA, Balbas M, Tataroglu A (2016) Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in au/7% graphene doped-PVA/n-Si (MPS) structures. J Appl Polym Sci 133.  https://doi.org/10.1002/app.43827
  26. 26.
    El-Shamy AG, Attia WM, Abd El Kader KM (2017) Enhancement of the conductivity and dielectric properties of PVA/ag nanocomposite films using gamma irradiation. Mater Chem Phys 191:225–229CrossRefGoogle Scholar
  27. 27.
    Bhargav PB, Sarada BA, Sharma AK, Rao VVRN (2010) Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci Part A Pure Appl Chem 47:131CrossRefGoogle Scholar
  28. 28.
    Mardare D, Rusu GI, Optoelectron J (2004) Comparison of the dielectric properties for doped and undoped TiO2 thin films. Adv Mater 6:333Google Scholar
  29. 29.
    El-Mallah HM (2012) AC electrical conductivity and dielectric properties of perovskite (Pb, Ca)TiO3 ,ceramic. Acta Phys Pol A 122(1):174–179Google Scholar
  30. 30.
    Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO) 10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRefGoogle Scholar
  31. 31.
    Ramesh S, Yahya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 291:152–153Google Scholar
  32. 32.
    Ramesh S, Arof AK (2001) Structural, thermal and electrochemical cell characteristics of poly (vinyl chloride)-based polymer electrolytes. J Power Sources 99:41–47CrossRefGoogle Scholar
  33. 33.
    J. Bisquert, G. Gracia-Belmonte, Interpretation of AC conductivity of lightly doped conducting polymers in terms of hopping conduction, Russ J Electrochem 40 (3) (2004) 352 (From Elektrokhimiya 40 (3) (2004) 396.Original English Text Copyright & 2004 by Bisquert, Garcia-Belmonte.), 358Google Scholar
  34. 34.
    Kashif I, Rahman SA, Soliman AA, Ibrahim EM, Abdel-Khalek EK, Mostafa AG, Sanad AM (2009) Effect of alkali content on AC conductivity of borate glasses containing two transition metals. Physica B 404:3842–3849CrossRefGoogle Scholar
  35. 35.
    Naresh V, Buddhudu S (2012) Structural, thermal, dielectric and ac conductivity properties of lithium fluoro-borate optical glasses. Cer Int 38:2325CrossRefGoogle Scholar
  36. 36.
    Kawamura J, Shimoji M (1986) The AC conductivity of superionic conducting glasses (AgI)x−(Ag4P2O7)1−x (x = 0.8, 0.75, 0.7): Experiment and analysis based on the generalized Langevin equation. J Non-Cryst Solids 79(3):367CrossRefGoogle Scholar
  37. 37.
    El-Falaky GE, WGuirguis O, AbdEl-Aal NS (2012) AC conductivity and relaxation dynamics in zinc–borate glasses. Prog in Nat Sci: Mat Int 22(2):86CrossRefGoogle Scholar
  38. 38.
    Gowda GVJ, Eraiahb B, Anavekar RV (2015) Ionic conductivity of praseodymium doped silver-borate glasses. J Alloys and Compd 620:192–196CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Spectroscopy Department, Physics DivisionNational Research CentreGizaEgypt
  2. 2.Laser Technology Unit, Physics DivisionNational Research CentreGizaEgypt
  3. 3.Basic Science DepartmentHorus UniversityKafr SaadEgypt
  4. 4.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations