The Spray-Pyrolyzed Copper Oxide Properties Based Precursor Concentration
Abstract
In this work, we report the effects of the precursor concentration on some physical properties of the spray pyrolyzed copper oxide films (CSi1-CSi4) on porous silicon substrates. Useful informations were extracted using the different characterization techniques: XRD, RAMAN, Photoluminescence (PL) spectroscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The XRD diffractogrammes show the formation of phase mixture (CuO and Cu2O) for all the samples. RAMAN analysis is in accordance with the XRD results. The PL spectroscopy provides ample informations about the emission bands of copper oxide. The SEM and AFM characterizations show a clear effect of the molarity on the microstructural properties of the deposited copper oxide films.
Keywords
Copper oxide Spray pyrolysis Porous silicon CatalysisPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The authors are very thankful to Pr. A. Bsiesy for his hospitality within LTM laboratory of Grenoble (France). We are also grateful to V. Bolcato (LTM laboratory, Grenoble, France) for helping us to perform the SEM and AFM characterizations. We would like also to thank Dr. M. R. Khelladi for helping us to do the AFM characterizations during the major revisions of this work. We are also grateful to Dr. M. Siad from the nuclear research center of Algiers (CRNA) for helping us to extract the PL characteristics of our samples.
References
- 1.Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Fernandez-Romero L, Andreu T, Cirera A, Romano-Rodriguez A, Cornet A, Morante JR, Barth S, Mathur S (Sep. 2008) Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J Phys Chem C 112(37):14639–14644CrossRefGoogle Scholar
- 2.Ingole SM, Navale ST, Navale YH, Bandgar DK, Stadler FJ, Mane RS, Ramgir NS, Gupta SK, Aswal DK, Patil VB (2017) Nanostructured tin oxide films: physical synthesis, characterization, and gas sensing properties. J Colloid Interface Sci 493:162–170CrossRefGoogle Scholar
- 3.Mardare D, Cornei N, Rusu GI (2009) On the properties of nanostructured titanium oxide thin films. Superlattice Microst 46(1–2):209–216CrossRefGoogle Scholar
- 4.Wu C-L, Wang C-K, Lin C-K, Wang S-C, Huang J-L (Sep. 2013) Electrochromic properties of nanostructured tungsten oxide films prepared by surfactant-assisted sol–gel process. Surf Coat Technol 231:403–407CrossRefGoogle Scholar
- 5.Huotari J, Bjorklund R, Lappalainen J, Spetz AL (2014) Nanostructured mixed phase vanadium oxide thin films as highly sensitive Ammonia sensor material. Procedia Eng 87:1035–1038CrossRefGoogle Scholar
- 6.Anandan S, Wen X, Yang S (Sep. 2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93(1):35–40CrossRefGoogle Scholar
- 7.Krishnamoorthy K, Kim S-J (Sep. 2013) Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater Res Bull 48(9):3136–3139CrossRefGoogle Scholar
- 8.Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H (Dec. 2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sensors Actuators B Chem 135(1):298–303CrossRefGoogle Scholar
- 9.Wang S, Zhang M, Zhang W (Mar. 2011) Yolk−Shell catalyst of single au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1(3):207–211CrossRefGoogle Scholar
- 10.T. Maruyama, Copper oxide thin films prepared from copper Dipivaloylmethanate and oxygen by chemical vapor deposition, Jpn J Appl Phys, vol. 37, no. Part 1, No. 7A, pp. 4099–4102, Jul. 1998Google Scholar
- 11.Liu L, Hong K, Hu T, Xu M (Jan. 2012) Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method. J Alloys Compd 511(1):195–197CrossRefGoogle Scholar
- 12.Ray SC (Jun. 2001) Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol Energy Mater Sol Cells 68(3–4):307–312CrossRefGoogle Scholar
- 13.Amikura K, Kimura T, Hamada M, Yokoyama N, Miyazaki J, Yamada Y (Aug. 2008) Copper oxide particles produced by laser ablation in water. Appl Surf Sci 254(21):6976–6982CrossRefGoogle Scholar
- 14.Kosugi T, Kaneko S (Dec. 1998) Novel spray-pyrolysis deposition of cuprous oxide thin films. J Am Ceram Soc 81(12):3117–3124CrossRefGoogle Scholar
- 15.Abdelmounaïm C, Amara Z, Maha A, Mustapha D (2016) Effects of molarity on structural, optical, morphological and CO2 gas sensing properties of nanostructured copper oxide films deposited by spray pyrolysis. Mater Sci Semicond Process 43:214–221CrossRefGoogle Scholar
- 16.Allam NK, Grimes CA (Jun. 2011) Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater Lett 65(12):1949–1955CrossRefGoogle Scholar
- 17.A. Raship, M. Z. Sahdan, F. Adriyanto, N. M. Fauzee, and A. S Bakri, The Effects of Ph Value on the Preparation of Copper Oxide Thin Films By Dip Coating Technique, vol. 11, no. 14, pp. 8829–8833, 2016Google Scholar
- 18.Ben Salem S, Achour Z, Thamri K, Touayar O (2014) Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber. Nanoscale Res Lett 9(1):577CrossRefGoogle Scholar
- 19.Voinea M, Vladuta C, Bogatu C, Duta A (2008) Surface properties of copper based cermet materials. Mater Sci Eng B Solid-State Mater Adv Technol 152(1–3):76–80CrossRefGoogle Scholar
- 20.Nickolov RN, Donkova BV, Milenova KI, Mehandjiev DR (2006) Porous texture of CuO prepared from copper oxalate precursor. Adsorpt Sci Technol 24(6):497–505CrossRefGoogle Scholar
- 21.Jia B, Qin M, Zhang Z, Cao Z, Wu H, Chen P, Zhang L, Lu X, Qu X (Feb. 2016) The formation of CuO porous mesocrystal ellipsoids via tuning the oriented attachment mechanism. CrystEngComm 18(8):1376–1383CrossRefGoogle Scholar
- 22.Dhas CR, Alexander D, Christy AJ, Jeyadheepa K, Raj AME, Raja CS (Aug. 2014) Preparation and characterization of CuO thin films prepared by spray pyrolysis technique for ethanol gas sensing application. Asian J Appl Sci 7(8):671–684CrossRefGoogle Scholar
- 23.Halder NC, Wagner CNJ (1966) Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr 20(2):312–313CrossRefGoogle Scholar
- 24.A. K. Verma and R. S. N Tripathi, Thickness Dependent Properties of n-CdSe Thin Films Fabricated by Electron Beam Evaporation Technique , vol. 10, no. 7, pp. 239–246, 2013Google Scholar
- 25.Chen XK, Irwin JC, Franck JP (Nov. 1995) Evidence for a strong spin-phonon interaction in cupric oxide. Phys Rev B 52(18):R13130–R13133CrossRefGoogle Scholar
- 26.Yu T, Zhao X, Shen Z, Wu Y, Su W (Aug. 2004) Investigation of individual CuO nanorods by polarized micro-Raman scattering. J Cryst Growth 268(3–4):590–595CrossRefGoogle Scholar
- 27.Dar MA, Kim YS, Kim WB, Sohn JM, Shin HS (Sep. 2008) Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl Surf Sci 254(22):7477–7481CrossRefGoogle Scholar
- 28.Balamurugan B, Mehta BR, Avasthi DK, Singh F, Arora AK, Rajalakshmi M, Raghavan G, Tyagi AK, Shivaprasad SM (Sep. 2002) Modifying the nanocrystalline characteristics structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J Appl Phys 92(6):3304–3310CrossRefGoogle Scholar
- 29.Schennach R, Gupper A (2003) Copper oxidation studied by in situ Raman spectroscopy. MRS Online Proc Libr Arch:766Google Scholar
- 30.Mencer DE, Hossain MA, Schennach R, Grady T, McWhinney H, Gomes JAG, Kesmez M, Parga JR, Barr TL, Cocke DL (Dec. 2004) On the surface analysis of copper oxides: the difficulty in detecting Cu3O2. Vacuum 77(1):27–35CrossRefGoogle Scholar
- 31.Mageshwari K, Sathyamoorthy R (2013) Flower-shaped CuO nanostructures: synthesis, characterization andAntimicrobial activity. J Mater Sci Technol 29(10):909–914CrossRefGoogle Scholar
- 32.Mageshwari K, Sathyamoorthy R (Apr. 2013) Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater Sci Semicond Process 16(2):337–343CrossRefGoogle Scholar
- 33.Gao C, Shen H, Sun L, Shen Z (Jun. 2011) Chemical bath deposition of Bi2S3 films by a novel deposition system. Appl Surf Sci 257(17):7529–7533CrossRefGoogle Scholar