pp 1–10 | Cite as

Electrostatic Stabilization and Characterization of Fine Ground Silicon Particles in Ethanol

  • Markus NöskeEmail author
  • Sandra Breitung-Faes
  • Arno Kwade
Open Access
Original Paper


Stirred media milling is a common method for the efficient production of nanoparticles. Here the grinding of semi-metallic silicon nanoparticles is presented, which are of special interest as anode material for next generation lithium-ion batteries. Ground silicon particles show an enormous reactivity in water due to particle etching but only surficial oxidization in alcoholic solvents, which inhibits further particle etching. Therefore, the grinding process was realized in ethanol as a solvent in order to avoid particle etching but allow good integrity to a water-based anode production later on. From the application point of view the colloidal stability of silicon nanoparticle suspensions is of great importance, to realize anode coating structures with fine disperse silicon nanoparticles. Hence, this study is focusing on the electrostatic stabilization of the silicon nanoparticles in ethanol, which was characterized by zeta potential and the agglomerate size measurements. These results corresponding to electrostatical interactions are also in good accordance with rheological characterization of the suspensions and theoretical calculations. Additionally, the final metallic silicon content was also of high interest for the application, so that a thermogravimetric analysis procedure was established and evaluated by a chemical pulping procedure according to DIN EN ISO 21068-2. Furthermore the impact of the chosen stabilization additive and the solvent purity on the silicon content are discussed. Finally the process is realized by a pre-grinding step in a planetary ball mill and a fine grinding step within a stirred media mill. With this setup a production route for suspensions with a median primary particle size of less than 150 nm and metallic silicon content above 80 wt.% of the particles is presented. The ground nanoparticles show a surficial oxidized shell with a silicon core and a flake-like shape with crystalline and amorphous regions.


Fine grinding Silicon nanoparticles Electrostatic stabilization Surficial oxidation 



The Federal Ministry of Education and Research / Bundesministerium für Bildung und Forschung (BMBF) is gratefully acknowledged for the financial support. The authors also thank Christine Nowak (iPAT, TU Braunschweig) who assisted this research work, Bilal Temel (iPAT, TU Braunschweig) for XRD and TEM analysis, as well as Simone Schulze (iCTV, TU Braunschweig) and Peter Pfeiffer (ifW, TU Braunschweig) for SEM pictures.


  1. 1.
    Barth N, Zimmermann M, Becker AE, Graumann T, Garnweitner G, Kwade A (2015) Influence of TiO2 nanoparticle synthesis on the properties of thin coatings. Thin Solid Films 574:20–27. CrossRefGoogle Scholar
  2. 2.
    Steiner D, Finke JH, Kwade A (2018) Instant ODFs - development of an intermediate, nanoparticle-based product platform for individualized medication. Eur J Pharm Biopharm 126:149–158. CrossRefPubMedGoogle Scholar
  3. 3.
    Hesselbach J, Barth N, Lippe K, Schilde C, Kwade A (2015) Process chain and characterisation of nanoparticle enhanced composite coatings. Adv Powder Technol 26(6):1624–1632. CrossRefGoogle Scholar
  4. 4.
    Jux M, Finke B, Mahrholz T, Sinapius M, Kwade A, Schilde C (2017) Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties. J Nanopart Res 19(4):241. CrossRefGoogle Scholar
  5. 5.
    Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett 88(16):161102. CrossRefGoogle Scholar
  6. 6.
    Boyraz O, Jalali B (2005) Demonstration of directly modulated silicon Raman laser. Opt Express 13(3):796. CrossRefPubMedGoogle Scholar
  7. 7.
    Wang L, Reipa V, Blasic J (2004) Silicon nanoparticles as a luminescent label to DNA. Bioconjug Chem 15(2):409–412. CrossRefPubMedGoogle Scholar
  8. 8.
    Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MMC, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3(3):151–157. CrossRefPubMedGoogle Scholar
  9. 9.
    Park J-H, Gu L, von MG et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bimbo LM, Mäkilä E, Laaksonen T, Lehto VP, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10):2625–2633. CrossRefPubMedGoogle Scholar
  11. 11.
    Näkki S, Rytkönen J, Nissinen T, Florea C, Riikonen J, Ek P, Zhang H, Santos HA, Närvänen A, Xu W, Lehto VP (2015) Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomater 13:207–215. CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang K, Loong SLE, Connor S et al (2005) Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin Cancer Res 11(20):7532–7537. CrossRefPubMedGoogle Scholar
  13. 13.
    Drahi E, Blayac S, Saunier S, Valdivieso F, Bartholin MC, Grosseau P, Benaben P (2011) Recovering functional properties of solution processed silicon thin-films. Energy Procedia 10:144–148. CrossRefGoogle Scholar
  14. 14.
    Drahi E, Gupta A, Blayac S, Saunier S, Benaben P (2014) Characterization of sintered inkjet-printed silicon nanoparticle thin films for thermoelectric devices. Phys Status Solidi A 211(6):1301–1307. CrossRefGoogle Scholar
  15. 15.
    Riecke A (2017) Thermische Umwandlung dünner Silizium-Schichten. Friedrich-Alexander-Universität Erlangen-Nürnberg, DissertationGoogle Scholar
  16. 16.
    Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1):74–103. CrossRefPubMedGoogle Scholar
  17. 17.
    Hou X, Zhang M, Wang J, Hu S, Liu X, Shao Z (2015) High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. J Alloys Compd 639:27–35. CrossRefGoogle Scholar
  18. 18.
    Li F-S, Wu Y-S, Chou J, Wu NL (2015) A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Chem Commun (Camb) 51(40):8429–8431. CrossRefGoogle Scholar
  19. 19.
    X-y Z, Song W-L, Liu Z et al (2017) Geometric design of micron-sized crystalline silicon anodes through in situ observation of deformation and fracture behaviors. J Mater Chem A 5(25):12793–12802. CrossRefGoogle Scholar
  20. 20.
    Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531. CrossRefPubMedGoogle Scholar
  21. 21.
    Reindl A, Aldabergenova S, Altin E, Frank G, Peukert W (2007) Dispersing silicon nanoparticles in a stirred media mill - investigating the evolution of morphology, structure and oxide formation. Phys Stat Sol (A) 204(7):2329–2338. CrossRefGoogle Scholar
  22. 22.
    Reindl A, Voronov A, Gorle PK, Rauscher M, Roosen A, Peukert W (2008) Dispersing and stabilizing silicon nanoparticles in a low-epsilon medium. Colloids Surf A Physicochem Eng Asp 320(1–3):183–188. CrossRefGoogle Scholar
  23. 23.
    Verwey EJW, Overbeek JZG (1948) Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. Elsevier Publishing Company, New York - Amsterdam - London - BrusselsGoogle Scholar
  24. 24.
    Barth N, Schilde C, Kwade A (2014) Influence of electrostatic particle interactions on the properties of particulate coatings of titanium dioxide. J Colloid Interface Sci 420:80–87. CrossRefPubMedGoogle Scholar
  25. 25.
    Menon M, Decourcelle S, Ramousse S, Larsen PH (2006) Stabilization of ethanol-based alumina suspensions. J American Ceramic Society 89(2):457–464. CrossRefGoogle Scholar
  26. 26.
    Mussini T, Covington AK, Longhi P, Rondinini S (1985) Criteria for standardization of pH measurements in organic solvents and water + organic solvent mixtures of moderate to high permittivities. Pure Appl Chem 57(6):865–876. CrossRefGoogle Scholar
  27. 27.
    Müller RH, Mehnert W, Paulke B-R (1996) Zetapotential und Partikelladung in der Laborpraxis. Einführung in die Theorie, Praktische Meßdurchführung, Dateninterpretation. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, StuttgartGoogle Scholar
  28. 28.
    Riikonen J, Salomäki M, van Wonderen J, Kemell M, Xu W, Korhonen O, Ritala M, MacMillan F, Salonen J, Lehto VP (2012) Surface chemistry, reactivity and pore structure of porous silicon oxidized by various methods. Langmuir 28(28):10573–10583. CrossRefPubMedGoogle Scholar
  29. 29.
    Wayner DDM, Wolkow RA (2002) Organic modification of hydrogen terminated silicon surfaces1. J Chem Soc Perkin Trans 2(1):23–34. CrossRefGoogle Scholar
  30. 30.
    Newton TA, Huang Y-C, Lepak LA, Hines MA (1999) The site-specific reactivity of isopropanol in aqueous silicon etching: controlling morphology with surface chemistry. J Chem Phys 111(20):9125–9128. CrossRefGoogle Scholar
  31. 31.
    Wang G, Sarkar P, Nicholson PS (1996) Influence of acidity on the electrostatic stability of alumina suspensions in ethanol. J Am Ceram SocGoogle Scholar
  32. 32.
    Lagaly G, Schulz O, Zimehl R (1997) Dispersionen und Emulsionen: Eine Einführung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale. Steinkopff, HeidelbergCrossRefGoogle Scholar
  33. 33.
    Reindl A, Peukert W (2008) Intrinsically stable dispersions of silicon nanoparticles. J Colloid Interface Sci 325(1):173–178. CrossRefPubMedGoogle Scholar
  34. 34.
    Israelachvili JN (2015) Van der Waals forces between particles and surfaces. In: Israelachvili JN (ed) Intermolecular and surface forces3rd edn. Elsevier Science, Saint Louis, pp 253–289Google Scholar
  35. 35.
    Schmidt VM (2003) Elektrochemische Verfahrenstechnik. WILEY-VCH, WeinheimCrossRefGoogle Scholar
  36. 36.
    Tao H-C, Yang X-L, Zhang L-L, Ni SB (2014) Double-walled core-shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries. Ionics 20(11):1547–1552. CrossRefGoogle Scholar
  37. 37.
    Schierning G, Theissmann R, Wiggers H, Sudfeld D, Ebbers A, Franke D, Witusiewicz VT, Apel M (2008) Microcrystalline silicon formation by silicon nanoparticles. J Appl Phys 103(8):84305. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute for Particle TechnologyTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations