pp 1–11 | Cite as

Sulfonic Acid-Functionalized Silica-Coated Magnetic Nanoparticles as a Reusable Catalyst for the Preparation of Pyrrolidinone Derivatives Under Eco-Friendly Conditions

  • Zahra Hosseinzadeh
  • Ali RamazaniEmail author
  • Hamideh Ahankar
  • Katarzyna Ślepokura
  • Tadeusz Lis
Original Paper


The surface of silica-coated CoFe2O4 magnetic nanoparticles (CoFe2O4@SiO2), which is resistant to the oxidation due to silicone coating, was functionalized using chlorosulfonic acid and used as an efficient and recyclable catalyst for the preparation of 3-pyrrolin-2-ones from diethyl acetylenedicarboxylate, an aldehyde and aniline in ethanol solvent at 60 °C. In the presented study, some fascinating chracteritics of such catalyst, such as magnetically separable, simple workup and obtaining a high purity of products by simple recrystallization, have been successfully obtained. The structural features of CoFe2O4@SiO2-SO3H catalyst were elucidated by X-ray powder diffraction (XRPD), thermo-gravimetric studying (TGA), scanning electron microscopy (SEM) and FT-IR spectra.

Graphical Abstract

Sulfnic acid-functionalized silica-coated magnetic nanoparticles as a reusable catalyst for the preparation of pyrrolidinone derivatives under eco-friendly conditions


Cobalt ferrite Silica-coated Sulfonic acid-functionalized Reusable catalyst Magnetic nanoparticles 3-pyrrolin-2-ones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koesnarpadi S, Santosa SJ, Siswanta D, Rusdiarso B (2015) Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/HA). Procedia Environ Sci 30:103–108CrossRefGoogle Scholar
  2. 2.
    Sadri F, Ramazani A, Massoudi A, Khoobi M, Azizkhani V, Tarasi R, Dolatyari L, Min B-K (2014) Magnetic CoFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant. Bull Kor Chem Soc 35:2029–2032CrossRefGoogle Scholar
  3. 3.
    Tabatabaei Rezaei SJ, Shamseddin A, Ramazani A, Mashhadi Malekzadeh A, Azimzadeh Asiabi P (2017) Palladium nanoparticles immobilized on amphiphilic and hyperbranched polymer-functionalized magnetic nanoparticles: an efficient semi-heterogeneous catalyst for heck reaction. Appl Organomet Chem 31:3707CrossRefGoogle Scholar
  4. 4.
    Tarasi R, Ramazani A, Ghorbanloo M, Khoobi M, Aghahosseini H, Joo SW, Shafiee A (2018) Synthesis of magnetic Fe3O4@polyethyleneimine. Mn (II) from Fe3O4,[3-(2, 3-epoxypropoxy) propyl] trimethoxysilane, polyethyleneimine and Mn (II) acetate as a novel silicon-containing polymeric organic-inorganic hybrid nanomaterial and its catalytic investigation towards the oxidation of cyclohexene, ethyl benzene and toluene in the presence of H2O2 as an oxidant. Silicon 10:257CrossRefGoogle Scholar
  5. 5.
    Dayyani N, Ramazani A, Khoee S, Shafiee A (2018) Synthesis and characterization of the first generation of polyamino-ester dendrimer-grafted magnetite nanoparticles from 3-aminopropyltriethoxysilane (APTES) via the convergent approach. Silicon 10:595–601CrossRefGoogle Scholar
  6. 6.
    Ramazani A, Reza Kazemizadeh A (2011) Preparation of stabilized phosphorus ylides via multicomponent reactions and their synthetic applications. Curr Org Chem 15:3986–4020CrossRefGoogle Scholar
  7. 7.
    Reza Kazemizadeh A, Ramazani A (2012) Synthetic applications of passerini reaction. Curr Org Chem 16:418–450CrossRefGoogle Scholar
  8. 8.
    Ramazani A, Rouhani M, Joo SW (2016) Catalyst-free sonosynthesis of highly substituted propanamide derivatives in water. Ultrason Sonochem 28:393–399CrossRefGoogle Scholar
  9. 9.
    Ahankar H, Ramazani A, Joo SW (2016) Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions. Res Chem Intermed 42:2487–2500CrossRefGoogle Scholar
  10. 10.
    Ramazani A, Farshadi A, Mahyari A, Sadri F, Joo SW, Asiabi PA, Fardood ST, Dayyani N, Ahankar H (2016) Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by silica nanoparticles under solvent-free conditions. Int J Nano Dimens 7:41Google Scholar
  11. 11.
    Taghavi Fardood S, Ramazani A, Golfar Z, Joo SW (2017) Green synthesis of Ni-cu-Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Appl Organomet Chem 31:3823CrossRefGoogle Scholar
  12. 12.
    Anaraki-Ardakani H, Noei M, Tabarzad A (2012) Facile synthesis of N-(arylsulfonyl)-4-ethoxy-5-oxo-2, 5-dihydro-1H-pyrolle-2, 3-dicarboxylates by one-pot three-component reaction. Chin Chem Lett 23:45–48CrossRefGoogle Scholar
  13. 13.
    Kangani M, Maghsoodlou M-T, Hazeri N (2016) Vitamin B12: an efficient type catalyst for the one-pot synthesis of 3,4,5-trisubstituted furan-2 (5H)-ones and N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates. Chin Chem Lett 27:66–70CrossRefGoogle Scholar
  14. 14.
    Ettlinger L, Gäumann E, Hütter R, Keller-Schierlein W, Kradolfer F, Neipp L, Prelog V, Zähner H (1959) Stoffwechselprodukte von actinomyceten 17. MitteilungHolomycin. Helv Chim Acta 42:563–569CrossRefGoogle Scholar
  15. 15.
    Shiozawa H, Takahashi S (1994) Configurational studies on thiomarinol. J Antibiot 47:851–853CrossRefGoogle Scholar
  16. 16.
    Singh SB, Goetz MA, Jones ET, Bills GF, Giacobbe RA, Herranz L, Stevens-Miles S, Williams Jr DL (1995) Oteromycin: a novel antagonist of endothelin receptor. J Org Chem 60:7040–7042CrossRefGoogle Scholar
  17. 17.
    He H, Yang HY, Bigelis R, Solum EH, Greenstein M, Carter GT (2002) Pyrrocidines a and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett 43:1633–1636CrossRefGoogle Scholar
  18. 18.
    Clark AJ, Dell CP, McDonagh JM, Geden J, Mawdsley P (2003) Oxidative 5-endo cyclization of enamides mediated by ceric ammonium nitrate. Org Lett 5:2063–2066CrossRefGoogle Scholar
  19. 19.
    Chen J, Huang P-Q, Queneau Y (2009) Enantioselective synthesis of the R-enantiomer of the feeding deterrent (S)-Ypaoamide. J Org Chem 74(19):7457–7463CrossRefGoogle Scholar
  20. 20.
    Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y (1991) Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot 44:113–116CrossRefGoogle Scholar
  21. 21.
    Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide a: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355–357CrossRefGoogle Scholar
  22. 22.
    Asami Y, Kakeya H, Onose R, Yoshida A, Matsuzaki H, Osada H (2002) Azaspirene: a novel angiogenesis inhibitor containing a 1-oxa-7-azaspiro [4.4] non-2-ene-4, 6-dione skeleton produced by the fungus Neosartorya sp. Org Lett 4:2845–2848CrossRefGoogle Scholar
  23. 23.
    Li B, Lyle MP, Chen G, Li J, Hu K, Tang L, Alaoui-Jamali MA, Webster J (2007) Substituted 6-amino-4H-[1, 2] dithiolo [4, 3-b] pyrrol-5-ones: synthesis, structure–activity relationships, and cytotoxic activity on selected human cancer cell lines. Bioorg Med Chem 15:4601–4608CrossRefGoogle Scholar
  24. 24.
    Zhu Q, Gao L, Chen Z, Zheng S, Shu H, Li J, Jiang H, Liu S (2012) A novel class of small-molecule caspase-3 inhibitors prepared by multicomponent reactions. Eur J Med Chem 54:232–238CrossRefGoogle Scholar
  25. 25.
    Brine GA, Boldt KG (1983) Synthesis and anticonvulsant screening of 3, 3-diphenyl-2-pyrrolidone derivatives. J Pharm Sci 72:700–702CrossRefGoogle Scholar
  26. 26.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  27. 27.
    Naeimi H, Nazifi ZS (2013) A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1, 8-dioxo-octahydroxanthene derivatives. J Nanopart Res 15:2026CrossRefGoogle Scholar
  28. 28.
    CrysAlisPRO in Xcalibur software (2012). Agilent Technologies, Yarnton, UKGoogle Scholar
  29. 29.
    Sheldrick GM (2015) SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8CrossRefGoogle Scholar
  30. 30.
    Brandenburg K, Diamond V (2014) 3.1 eM; Crystal Impact GbR, Bonn, Germany, 2005. Received: January 11Google Scholar
  31. 31.
    Zamani F, Izadi E (2014) Polyvinyl amine coated Fe3O4@SiO2 magnetic microspheres for Knoevenagel condensation. Chin J Catal 35:21–27CrossRefGoogle Scholar
  32. 32.
    Lin Y, Chen H, Lin K, Chen B, Chiou C (2011) Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. J Environ Sci 23:44–50CrossRefGoogle Scholar
  33. 33.
    Kassaee M, Masrouri H, Movahedi F (2011) Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl Catal A Gen 395:28–33CrossRefGoogle Scholar
  34. 34.
    Nemati F, Afkham MG, Elhampour A (2014) Nano-Fe3O4-encapsulated silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green synthesis of 1, 1-diacetates. Green Chem Lett Rev 7:79–84CrossRefGoogle Scholar
  35. 35.
    Ahankar H, Ramazani A, Slepokura K, Lis T, Joo SW (2016) Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chem 18:3582–3593CrossRefGoogle Scholar
  36. 36.
    Sun J, Wu Q, Xia EY, Yan CG (2011) Molecular diversity of three-component reactions of aromatic aldehydes, arylamines, and acetylenedicarboxylates. Eur J Org Chem 2011:2981–2986CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran
  2. 2.Department of ChemistryAbhar Branch, Islamic Azad UniversityAbharIran
  3. 3.Faculty of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations