Advertisement

Silicon

pp 1–14 | Cite as

A Cubic Silsesquioxane Chemically Modified with a PAMAM Dendrimer G0: an Application in Electro-Oxidation of Ascorbic Acid

  • Devaney Ribeiro Do CarmoEmail author
  • Denys Ribeiro de Oliveira
  • Priscila Fernanda Pereira Barbosa
  • Natasha Mirella Inhã Godoi
Original Paper
  • 7 Downloads

Abstract

Octa-(3-chloropropyl) octasilsesquioxane (SS) was functionalized with a PAMAM dendrimer (SP) and characterized by some spectroscopic techniques such as Fourier Transform Infrared, Nuclear Magnetic Resonance, X-ray diffraction, X-ray Dispersive Energy Spectroscopy, Scanning Electron Microscopy and cyclic voltammetry. As a fast application, after there the Ag+ was adsorbed by SP and in a second step, the resulting material was reacted with potassium hexacyanoferrate (III) (AgHSP). The cyclic voltammogram of the AgHSP showed two redox pairs with formal potentials (Eθ’) of Eθ’(I) = 0.26 V and Eθ’ (II) = 0.71 V (v = 20 mV s−1, KNO3 1.00 mol L−1, pH 7.00) assigned to processes Ag0 / AgI and FeII (CN)6 / FeIII (CN)6, respectively. The analytical application of this new material (AgHSP) was tested in the rapid detection of acid ascorbic by strong electrocatalysis using graphite paste electrode (GPE). The limit of detection (LOD) obtained for this system was 7.034 × 10−5 mol L−1 with an excellent amperometric sensitivity of 0.0835 A / mol L−1.

Keywords

Silsesquioxanes PAMAM dendrimer Mixed valence complex Voltammetry Sensor Ascorbic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to express their gratitude for the financial support by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – Process 2014/18172-5.

References

  1. 1.
    Quadrelli EA, Basset JM (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254:707–728CrossRefGoogle Scholar
  2. 2.
    Baney RH, Itoh M, Sakakibara A, Suzukit T (1995) Silsesquioxanes. Chem Rev 95:1409–1430CrossRefGoogle Scholar
  3. 3.
    Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  4. 4.
    Lungu A, Florea NM, Manea M, Vasile E, Iovu H (2015) Polyhedral oligomeric silsesquioxanes nanoreinforced methacrylate/epoxy hybrids. J Appl Polym Sci 133:42912Google Scholar
  5. 5.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral Oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  6. 6.
    Xu D, Loo LS, Wang KJ (2011) Characterization and diffusion behavior of chitosan-POSS composite. Appl Polym Sci 122:427–435CrossRefGoogle Scholar
  7. 7.
    do Carmo DR, Bicalho UO, Silveira TFS, Dias Filho NL, Paim LLJ (2013) Determination of copper in different Ethanolic matrices using a Chloropropyl silica gel modified with a nanostructured cubic Octa(3-aminopropyl)octasilsesquioxane. J Chem 1:11.  https://doi.org/10.1155/2013509341 CrossRefGoogle Scholar
  8. 8.
    Blanco, I (2018) The rediscovery of POSS: a molecule rather than a filler. Polymers  https://doi.org/10.3390/polym10080904, 10
  9. 9.
    Do Carmo DR, Silvestrini DR, Barud HS, Dias Filho NL, Bicalho UO, Soares LA (2014) A Silsesquioxane organically modified with 4-Amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol: thermal behavior and its electrochemical detection of sulfhydryl compounds. J Nanomater 10(1):11.  https://doi.org/10.1155/2014/695954 CrossRefGoogle Scholar
  10. 10.
    Tossell JA (2007) Calculation of 19F and 29Si NMR shifts and stabilities of F encapsulating Silsesquioxanes. J Phys Chem 111:3584–3590Google Scholar
  11. 11.
    Li G, Wang L, Ni H, Pittman Jr CU (2001) Polyhedral oligomeric Silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154CrossRefGoogle Scholar
  12. 12.
    Marciniec B, Maciejewski H (2001) Transition metal-siloxide complexes; synthesis, structure and application to catalysis. Coord Chem Rev 223:301–335CrossRefGoogle Scholar
  13. 13.
    Zheng MM, Ruan GD, Feng YQ (2009) Evaluating polymer monolith in-tube solid-phase microextraction coupled to liquid chromatography/quadrupole time-of-flight mass spectrometry for reliable quantification and confirmation of quinolone antibacterials in edible animal food. J Chromatogr A 1216:7510–7519CrossRefGoogle Scholar
  14. 14.
    do Carmo DR, Magossi MS, Bicalho UO, Silvestrini DR (2014) Synthesis, characterization and thermal properties of silsesquioxane organically modified with 4, 5-diphenyl-2-imidazolethiol. Int J Chem.  https://doi.org/10.5539/ijcv6n2p22
  15. 15.
    Feher FJ, Tajima TL (1994) Synthesis of a molybdenum-containing Silsesquioxane which rapidly catalyzes the metathesis of olefins. J Am Chem Soc 116:2145–2146CrossRefGoogle Scholar
  16. 16.
    Buys IE, Hambley TW, Houlton DJ, Maschmeyer T, Masters AK (1994) Models of surface-confined metallocene derivatives. J Mol Catal 86:309–318CrossRefGoogle Scholar
  17. 17.
    Weidner R, Zeller N, Deubzer B, Frey V (1991) Organooligo-silsesquioxanes US Patent 5047492. http://patentscom/us-5047492html Acessed 10 Sept 2018
  18. 18.
    Lichtenhan JD (1996) Polymeric materials encyclopedia. CRC Press, New YorkGoogle Scholar
  19. 19.
    Ghanbari H, Cousins BG, Seifalian A (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32:1032–1046CrossRefGoogle Scholar
  20. 20.
    Ghanbari H, de Mel A, Seifalian AM (2011) Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. Int J Nanomedicine 6:775–786PubMedPubMedCentralGoogle Scholar
  21. 21.
    McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. ChemCommun 8:996–998Google Scholar
  22. 22.
    Mehl GH, Goodby JW (1996) Liquid-crystalline, substituted Octakis-(dimethylsiloxy) octasilsesquioxanes: oligomeric Supermolecular materials with defined topology. Angew Chem Int Ed Eng 35:2641–2643CrossRefGoogle Scholar
  23. 23.
    Moran M, Casado CM, Cuadrado (1993) Ferrocenyl substituted octakis (dimethylsiloxy) octasilsesquioxanes: a new class of supramolecular organometallic compounds. Synthesis, characterization, and electrochemistry. Organometallics 12:4327–4333CrossRefGoogle Scholar
  24. 24.
    Schimidt H (1990) Inorganic-organic composites by sol-geL techniques.Mat Res Soc Symp Proc  https://doi.org/10.1557/PROC-171-3, 171
  25. 25.
    Vieira EG, Silva RO, Do Carmo DR, Junior EF, Dias Filho NL (2017) Synthesis and comparison of the activities of a catalyst supported on two silicate materials. Mat Chem and Phys 191:197–205CrossRefGoogle Scholar
  26. 26.
    Do Carmo DR, Maraldi VA, Cumba LR (2018) Voltammetric properties of nickel Hexacyanoferrate (III) obtained on the titanium (IV) Silsesquioxane occluded into the H-FAU zeolite for detection of sulfite. SILICON.  https://doi.org/10.1007/s12633-018-9918-9
  27. 27.
    Do Carmo DR, Filho NLD, Stradiotto NR (2007) Encapsulation of titanium (IV) silsesquioxane into the NH4USY zeolite: preparation, characterization and application. Mater Res Bull 42:1811–1822CrossRefGoogle Scholar
  28. 28.
    Silvestrini DF, Maraldi VA, Filho NLD, do Carmo DR (2018) Reactivity of a Silsesquioxane Organofunctionalized with 4-Amino-5-phenyl-4H-[1,2,4]-Triazole-3- thiol: complementary characterization and an application to Chronoamperometric detection of L-dopamine. SILICON.  https://doi.org/10.1007/s12633-018-9878-0
  29. 29.
    Do Carmo DR, Silvestrini DF, da Silveira TSF, Cumba LR, Filho NLD, Soares LA (2015) Silsesquioxane organofunctionalized with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole: preparation and subsequent reaction with silver and potassium hexacyanoferrate (III) for detection of l-cysteine. Mat Sci Eng: C 57:24–30Google Scholar
  30. 30.
    Srinivasa-Gopalan S, Yarema KJ (2007) Dendrimers in Cancer treatment and diagnosis. Nanot Life Sci.  https://doi.org/10.1002/9783527610419.ntls0071
  31. 31.
    Kaur D, Jain K, Mehra NK, Kesharwani P, and Jain NK (2016) A review in comparative study of PPI and PAMAM dendrimers. J Nanopart Res 18:146Google Scholar
  32. 32.
    Caminade AM, Laurent R, Majoral JP (2005) Characterization of dendrimers. Adv Drug Deliv Rev 57:2130–2146CrossRefGoogle Scholar
  33. 33.
    Froehling PE (2001) Dendrimers and dyes- a review. Dyes Pigments 48:187–195CrossRefGoogle Scholar
  34. 34.
    Tomalia DA, Naylor AM, Goddard III WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Eng 29:138–175CrossRefGoogle Scholar
  35. 35.
    Felippotti TT, Do Carmo DR, Paim LL, Stradiotto NR, Bicalho UO, Parada CA, Grillo R, Fraceto LF, Coimbra NC (2011) Effect of a nanostructured dendrimer-naloxonazine complex on endogenous opioid peptides μ1 receptor-mediated post-ictal antinociception. Nanomedicine 7:871–880CrossRefGoogle Scholar
  36. 36.
    Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers: design, synthesis and chemical properties. J Mater Chem 16:3785–3798CrossRefGoogle Scholar
  37. 37.
    Jee J-A, Spagnuolo LA, Rudick JG (2012) Convergent synthesis of dendrimers via the Passerini three-component reaction. Org Lett 14:3292–3295CrossRefGoogle Scholar
  38. 38.
    Shcharbin D, Shcharbina N, Bryszewska M (2014) Recent patents in dendrimers for nanomedicine: evolution 2014 – FINAL. Rec Pat Nanomed 2:25–31CrossRefGoogle Scholar
  39. 39.
    Blanco I, Abate L, Bottino FA (2017) Mono substituted octaphenyl POSSs: the effects of substituents on thermal properties and solubility. Thermochim Acta 655:117–123CrossRefGoogle Scholar
  40. 40.
    Dittmar U, Hendan BJ, Flörke U, Marsmann HC (1995) Funktionalisierte octa-(propyl silsesquioxane)(3-XC3H6)8(Si8O12)modellverbindungen für oberflächen modifizierte kieselgele. J Organomet Chem 489:185–194CrossRefGoogle Scholar
  41. 41.
    Allinger NL, Cava MP, Jongh DC, Johnson CR, Lebel NA, Stevens CL (1976) Química orgânica. LTC, Rio de JaneiroGoogle Scholar
  42. 42.
    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic Silsesquioxane. J Am Chem Soc 123:11420–11430CrossRefGoogle Scholar
  43. 43.
    Do Carmo DR, Paim LL, Dias Filho NL, Stradiotto NR (2007) Preparation‚ characterization and application of a nanostructured composite: Octakis (cyanopropyldimethylsiloxy) octasilsesquioxane. App Surf Sci 253:3683–3689Google Scholar
  44. 44.
    Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophiys Mol Biol 74:141–173CrossRefGoogle Scholar
  45. 45.
    Nakamoto K (1986) Infrared and raman spectra of inorganic and coordination compounds. John Wiley, New YorkGoogle Scholar
  46. 46.
    Ng CW, Ding J, Shi Y, Gan LMJ (2001) Structure and magnetic properties of copper (II) hexacyanoferrate (III) compound. Phys Chem Solids 62:767–775CrossRefGoogle Scholar
  47. 47.
    Marciniec B, Dutkiewicz M, Maciejewski H, Kubicki M (2008) New, effective method of synthesis and structural characterization of octakis (3-chloropropyl) octasilsesquioxane. Organometallics 27:793–794CrossRefGoogle Scholar
  48. 48.
    Najlah M, Freeman S, Attwood D, D’Emanuele A (2006) Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 308:175–182CrossRefGoogle Scholar
  49. 49.
    Dutkiewicz M, Maciejewski H, Marciniec B (2009) Functionalisation of polyhedral oligomeric Silsesquioxane (POSS) via nucleoplilic substitution. Synthesis 12:2019–2024Google Scholar
  50. 50.
    Soto MB, Scholz F (2002) Cyclic voltammetry of immobilized microparticles with in situ calorimetry: Part II: Application of a thermistor electrode for in situ calorimetric studies of the electrochemistry of solid metal hexacyanoferrates. J Electroanal Chem 528:27–32CrossRefGoogle Scholar
  51. 51.
    Maliki MA, Kulesza PJ (1996) Preparation and characterization of ag-intercalated copper hexacyanoferrate films on electrodes. Electroanalysis 6:113–116CrossRefGoogle Scholar
  52. 52.
    Narayanan SS, Scholz FA (1999) A comparative study of the study of eletrocatalytic activities of some metal hexacyanoferrates for the oxidation of hydrazine. Electroanalysis 11:465–469CrossRefGoogle Scholar
  53. 53.
    Engel D, Grabner EW (1985) Copper hexacyanoferrate modified glassy carbon: a novel type of potassium-selective electrode. Phys Chem 89:982–986CrossRefGoogle Scholar
  54. 54.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New YorkGoogle Scholar
  55. 55.
    Jayasri D, Narayanan S (2006) Electrocatalytic oxidation and amperometric determination of BHA at graphite–wax composite electrode with silver hexacyanoferrate as electrocatalyst. Sensors Actuators B Chem 119:135–142CrossRefGoogle Scholar
  56. 56.
    do Carmo DR, Silva RM, Stradiotto NR (2004) Electrocatalysis and determination of ascorbic acid through graphite paste electrode modified with Iron nitroprusside. Port Electrochim Acta 22:71–79CrossRefGoogle Scholar
  57. 57.
    Soares LA, Yingzi W, Silveira TFS, Silvestrini DR, Bicalho UO, Dias Filho NL, Carmo DR (2013) Cubic Silsesquioxane modified with Purpald: preparation, characterization and a Voltammetric application for determination of sulfite. Int J Electrochem Sci (Online) 8:7565Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Devaney Ribeiro Do Carmo
    • 1
    Email author
  • Denys Ribeiro de Oliveira
    • 1
  • Priscila Fernanda Pereira Barbosa
    • 1
  • Natasha Mirella Inhã Godoi
    • 1
  1. 1.Faculdade de Engenharia de Ilha Solteira UNESP, Departamento de Física e QuímicaUniversidade Estadual PaulistaIlha SolteiraBrazil

Personalised recommendations