pp 1–8 | Cite as

Electrochemical Impedance Study of Porous Silicon Prepared by Metal-Assisted Chemical Etching

  • A. S. MogodaEmail author
  • Y. H. Ahmad
Original Paper


Covering with thin metal facilitates the etching of p-type silicon in a solution of HF containing KBrO3, KIO3 or K2S2O8 as an oxidizing agent. Electroless deposition of Ag, Pd or Au was carried out on p-type Si (100) surface before immersion in the etchant solution. The properties of the formed porous silicon layer were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Ag-enhanced chemical etching of p-Si in 22 M HF containing 0.1 M of KBrO3 or KIO3 led to the formation of micro pores while silicon etching in 22 M HF/0.1 M K2S2O8 after deposition of Ag gave a large-area of silicon nanowires on Si surface. Decreasing the amount of Ag deposited on Si and etching in 22 M HF/0.1 M K2S2O8 caused in formation of nanoproous layer on Si. Pd proved that it is a good assistant for etching of Si in 22 M HF/0.1 M K2S2O8 like Ag and both gave high density of small pores on Si while Au gave a small number of large pores. An appropriate electrical equivalent circuit was used to fit the experimental impedance results of the metal-modified silicon surface in aqueous solution of HF/ oxidizing agent.


Metal-assisted chemical etching Porous silicon Surface morphology Control experiments EIS fitting parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Searson PC, Macaulay JM, Prokes SM (1992) The Formation, Morphology, and Optical Properties of Porous Silicon Structures. J Electrochem Soc 139:3373CrossRefGoogle Scholar
  2. 2.
    Tian B, Zheng X, Kempa T (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889CrossRefGoogle Scholar
  3. 3.
    Lin VSY, Dancil KPS, Sailor MJ, Ghadiri MR (1997) A Porous Silicon-Based Optical Interferometric Biosensor. Science 278:840–843CrossRefGoogle Scholar
  4. 4.
    Dancil KPS, Greiner DP (1999). MJSailorJ Am Chem 121:7925CrossRefGoogle Scholar
  5. 5.
    Starodub VM, Fedorenko LL, Sisetskiy AP, Starodub NF (1999) Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sensors Actuators B Chem 58:409–414CrossRefGoogle Scholar
  6. 6.
    Lètant SE, Sailor MJ (2000) Detection of HF Gas with a Porous Silicon Interferometer. Adv Mater 12:355–359CrossRefGoogle Scholar
  7. 7.
    Zangooie S, Bjorkland R, Arwin H (1997) Vapor sensitivity of thin porous silicon layers. Sensors Actuators B Chem 43:168–174CrossRefGoogle Scholar
  8. 8.
    Talierico T, Dihan M, Massone E, Foucaran A, Gué AM, Bretagnon T, Fraisse B, Montès L (1995). Sens Actuators A 46:43CrossRefGoogle Scholar
  9. 9.
    Létant SE, Content S, Tan TT, Zenhausen F, Sailor MJ (2000). Sensors Actuators B Chem 69:193–198CrossRefGoogle Scholar
  10. 10.
    Anderson RC, Muller RS (1990). CWTobias Sens Actuator A 23:835CrossRefGoogle Scholar
  11. 11.
    Bell TE, Gennissen PTJ, DeMunter D, Kuhl M (1996) Porous silicon as a sacrificial material. J Micromech Microeng 6:361–369CrossRefGoogle Scholar
  12. 12.
    Melnikov VA, Astrova EV, Perova TS, Srigengan V (2008) Stain etching of micro-machined silicon structures. J Micromech Microeng 18:025019CrossRefGoogle Scholar
  13. 13.
    Cruz S, Honig-d’Orville A (2005) Fabrication and Optimization of Porous Silicon Substrates for Diffusion Membrane Applications. J Muller J Electrochem Soc 152:C418CrossRefGoogle Scholar
  14. 14.
    Wei J, Buriak JM, Siuzdak G (1999) Desorption–ionization mass spectrometry on porous silicon. Nature 399:243–246CrossRefGoogle Scholar
  15. 15.
    Lévy-Clèment C, Bastide S (1999) Openings in Photoelectrochemistry and Photocorrosion of Silicon. Z Phys Chem 212:123–143CrossRefGoogle Scholar
  16. 16.
    Chou C-C, Tsao K-y, Wa C-C, Yang H, Chen C-M (2015) Improved power conversion efficiency for dye-sensitized solar cells using a subwavelength-structured antireflective coating. Appl Surf Sci 328:198–204CrossRefGoogle Scholar
  17. 17.
    Aouida S, Saadoum M, Saad KB, Bassls B (2006) Phase transition and luminescence properties from vapor etched silicon. Thin Solid Films 495:357–360CrossRefGoogle Scholar
  18. 18.
    Kang K, Lee HS, Han DW (2010). Appl Phys Lett 96:053110CrossRefGoogle Scholar
  19. 19.
    Kelzenberg MD, Turner-Evans DB, Kayes BM (2013). Nano Lett 8:710CrossRefGoogle Scholar
  20. 20.
    Liu Y, Sun W, Jian Y (2015) Fabrication of bifacial wafer-scale silicon nanowire arrays with ultra-high aspect ratio through controllable metal-assisted chemical etching. Mater Lett 139:437–442CrossRefGoogle Scholar
  21. 21.
    Lehmann V, Gosele U (1991) Porous silicon formation: A quantum wire effect. Appl Phys Lett 58:856–858CrossRefGoogle Scholar
  22. 22.
    Kanemitsu Y (1993) Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell. Phys Rev B 48:4883–4886CrossRefGoogle Scholar
  23. 23.
    Kooij ES, Butter K, Kelly JJ (1999). Electrochem & Solid-State Lett 2:178CrossRefGoogle Scholar
  24. 24.
    Li S, Ma W, Zhou Y, Chen X, Ma M, Xiao Y, Xu Y (2014). J Luminescence 146:76CrossRefGoogle Scholar
  25. 25.
    Robbins H, Schwartz B (1976). J Electrochem Soc 123:1903CrossRefGoogle Scholar
  26. 26.
    Fathauer RW, Georges T, Ksendzov A, Vasquez RP (1992). Appl Phys Lett 60:995CrossRefGoogle Scholar
  27. 27.
    Starostina EA, Starkov VV (2002). AFVyatkin Mikroelektronika 31:104Google Scholar
  28. 28.
    Mogoda AS, Ahmad YH, Badawy WA (2011). Mater Chem & Phys 126:676CrossRefGoogle Scholar
  29. 29.
    Harady Y, Li X, Bohn PW, Nuzzo RG (2001) Catalytic Amplification of the Soft Lithographic Patterning of Si. Nonelectrochemical Orthogonal Fabrication of Photoluminescent Porous Si Pixel Arrays. J Am Chem Soc 123:8709–8717CrossRefGoogle Scholar
  30. 30.
    Chattopadhyay S, Li X, Bohn PW (2002) In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J Appl Phys 91:6134–6140CrossRefGoogle Scholar
  31. 31.
    Malinovvska DD, Vassileva MS, Tzenov N, Kamenova M (1997). Thin Solid Films 297:9CrossRefGoogle Scholar
  32. 32.
    Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574CrossRefGoogle Scholar
  33. 33.
    Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516CrossRefGoogle Scholar
  34. 34.
    Megouda N, Hadjersi T, Piret G, Boukherroub R, Elkechai O (2009) Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution. Appl Surf Sci 255:6210–6216CrossRefGoogle Scholar
  35. 35.
    Li S, Ma W, Chen X, Xie K, Li Y, He X, Yang X, Lei Y (2016) Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl Surf Sci 369:232–240CrossRefGoogle Scholar
  36. 36.
    He X, Li S, Ma W, Ding Z, Yu J, Qin B, Yang J, Zou Y, Qiu J (2017) A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Mater Lett 196:269–272CrossRefGoogle Scholar
  37. 37.
    Hadjersi T, Gabouze N, Kooij ES, Zinine A, Ababou A, Chergui W, Chedraga H, Belhousse S, Djeghri A (2004) Metal-assisted chemical etching in HF/Na2S2O8 OR HF/KMnO4 produces porous silicon. Thin Solid Films 459:271–275CrossRefGoogle Scholar
  38. 38.
    Hadjersi T, Gabouze N, Ababou A, Boumaour M, Chergui W, Cheraga H, Belhouse S, Djeghri A (2005). Mater Sci Forum 480:139CrossRefGoogle Scholar
  39. 39.
    Hadjersi T, Gabouze N, Yamamoto N, Sakamaki K, Takai H, Ababou A, Kooij ES (2005). Phys Status Solidi 2:3384CrossRefGoogle Scholar
  40. 40.
    Douani R, Hadjersi T, Boukherroub R, Adour L, Manseri A (2008) Formation of aligned silicon-nanowire on silicon in aqueous HF/(AgNO3+Na2S2O8) solution. Appl Surf Sci 254:7219–7222CrossRefGoogle Scholar
  41. 41.
    Hadjersi T, Gabouze N, Yamamoto N, Benazzouz C, Cheraga H (2005) Blue luminescence from porous layers produced by metal-assisted chemical etching on low-doped silicon. Vacuum 80:366–370CrossRefGoogle Scholar
  42. 42.
    Badawy WA, El-Sherif RM, Khalil SA (2010) Porous Si layers—Preparation, characterization and morphology. Electrochim Acta 55:8563–8569CrossRefGoogle Scholar
  43. 43.
    El-Sherif RM, Khalil SA, Badawy WA (2011) Metal-assisted etching of p-silicon—Pore formation and characterization. J Alloys Compd 509:4122–4126CrossRefGoogle Scholar
  44. 44.
    Nahm KS, Seo YH (1997) Formation mechanism of stains during Si etching reaction in HF–oxidizing agent–H2O solutions. J Appl Phys 81:2418–2424CrossRefGoogle Scholar
  45. 45.
    Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee ST (2006) Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chem Eur J 12:7942–7947CrossRefGoogle Scholar
  46. 46.
    Safi M, Chazalviel J–N, Cherkaoui M, Belaidi A, Gorochov O (2002) Etching of n-type silicon in (HF+oxidant) solutions: in situ characterisation of surface chemistry. Electrochim Acta 47:2573–2581CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations