pp 1–10 | Cite as

Magnetic Aluminosilicate Nanoclay: a Natural and Efficient Nanocatalyst for the Green Synthesis of 4H-Pyran Derivatives

  • Ali Maleki
  • Zoleikha Hajizadeh
Original Paper


In this study, the magnetic nanoparticles have been loaded on the halloysite nanotubes (HNTs) as an aluminosilicate clay mineral. Fe3O4/HNTs nanocomposite was fully characterized by Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) analysis, thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM) image, transmission electron microscope (TEM) image, inductively coupled plasma (ICP) analysis, X-ray diffraction (XRD) pattern and vibrating sample magnetometer (VSM) curve. The performance of the Fe3O4/HNTs as a heterogeneous catalyst was investigated in the synthesis of 4H-pyran derivatives. The high efficiently, mild reaction condition, green solvents and using the eco-friendly and recoverable catalyst are the most advantages of the present work. Moreover, the simple separation and reuse of the Fe3O4/HNTs nanocatalyst were confirmed stability and efficiency of the catalyst after 7 runs.


Aluminosilicate nanoclay Green magnetic nanocomposite Halloysite Fe3O4 nanoparticles 4H-Pyran 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Supplementary material

12633_2019_69_MOESM1_ESM.doc (242 kb)
ESM 1 (DOC 242 kb)


  1. 1.
    Bergaya F, Lagaly G (2013) Developments in. Clay Sci 5:1–7Google Scholar
  2. 2.
    Lvov Y, Aerov A, Fakhrullin R (2014) Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interf Sci 207:189–198CrossRefGoogle Scholar
  3. 3.
    Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv Mater 28:1227–1250CrossRefGoogle Scholar
  4. 4.
    Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525CrossRefGoogle Scholar
  5. 5.
    Hajizadeh Z, Maleki A (2018) Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mole Catal 460:87–93CrossRefGoogle Scholar
  6. 6.
    Suresh G, Vasu V, Rao MV (2018) A Composite (Taguchi-Utility-RSM) Approach for Optimizing the Tribological Responses of Polytetrafluoroethylene (PTFE) Nanocomposites for Self-lubrication Applications. Silicon 10:2043–2053CrossRefGoogle Scholar
  7. 7.
    Riahi-Madvaar R, Taher MA, Fazelirad H (2017) Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal. Appl Clay Sci 137:101–106CrossRefGoogle Scholar
  8. 8.
    Chen L, Zhou CH, Fiore S, Tong DS, Zhang H, Li CS, Ji SF, Yu WH (2016). Appl Clay Sci 127:143–163CrossRefGoogle Scholar
  9. 9.
    Fattahi N, Ramazani A, Kinzhybalo V (2018). Silicon.
  10. 10.
    Fattahi N, Ramazani A, Ahankar H, Azimzadeh Asiabi P, Kinzhybalo V (2018) Tetramethylguanidine-Functionalized Fe3O4/ Chloro-Silane Core-Shell Nanoparticles: an Efficient Heterogeneous and Reusable Organocatalyst for Aldol Reaction. Silicon.
  11. 11.
    Maleki A, Aghaei M (2017) Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4 @clay core-shell. Ultrason Sonochem 38:585–589Google Scholar
  12. 12.
    Maleki A, Firozi-Haji R, Hajizadeh Z (2018) Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. Int J Biol Macromol 116:320–326CrossRefGoogle Scholar
  13. 13.
    Tian X, Wang W, Tian N, Zhou C, Yang C, Komarneni S (2016) Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4 /halloysite nanohybrid. J Hazard Mater 309:151–156Google Scholar
  14. 14.
    Tsoufis T, Katsaros F, Kooi BJ, Bletsa E, Papageorgiou S, Deligiannakis Y, Panagiotopoulos I (2017) Halloysite nanotube-magnetic iron oxide nanoparticle hybrids for the rapid catalytic decomposition of pentachlorophenol. Chem Eng J 313:466–474CrossRefGoogle Scholar
  15. 15.
    Mu B, Wang W, Zhang J, Wang A (2014) Superparamagnetic sandwich structured silver/halloysite nanotube/Fe3O4 nanocomposites for 4-nitrophenol reduction. RSC Adv 4:39439–39445Google Scholar
  16. 16.
    Xie Y, Qian D, Wu D, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168:959–963CrossRefGoogle Scholar
  17. 17.
    Rostamnia S, Alamgholiloo H, Jafari M (2018) Appl Organomet Chem 32:e4370–e4379Google Scholar
  18. 18.
    Maleki A, Hajizadeh Z, Abbasi H (2018) Carbon Lett 27:42–49Google Scholar
  19. 19.
    Azzam RA, Mohareb RM (2015) Multicomponent Reactions of Acetoacetanilide Derivatives with Aromatic Aldehydes and Cyanomethylene Reagents to Produce 4<i>H</i>-Pyran and 1,4-Dihydropyridine Derivatives with Antitumor Activities. Chem Pharm Bull 63:1055–1064CrossRefGoogle Scholar
  20. 20.
    Maleki A, Ghassemi M, Firouzi-Haji R (2018) Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl Chem 90:387–394CrossRefGoogle Scholar
  21. 21.
    Hekmatshoar R, Majedi S, Bakhtiari K (2008) Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal Commun 9:307–310CrossRefGoogle Scholar
  22. 22.
    Niknam K, Borazjani N, Rashidian R, Jamali A (2013) Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chin J Catal 34:2245–2254CrossRefGoogle Scholar
  23. 23.
    Maleki B, Sheikh S (2015) One-pot Synthesis of 2-Amino-2-chromene and 2-Amino-3-cyano-4H-pyran Derivatives Promoted by Potassium Fluoride. Org Prep Proced Int 47:368–378CrossRefGoogle Scholar
  24. 24.
    Maleki A (2013) Tetrahedron Lett 54:2055–2059Google Scholar
  25. 25.
    Maleki A (2018) Ultrason Sonochem 40:460–464Google Scholar
  26. 26.
    Maleki A (2018) Polycycl Aromat Compd 38:402–409Google Scholar
  27. 27.
    Maleki A, Rahimi J, Hajizadeh Z, Niksefat M (2019) J Organomet Chem 881:58-65Google Scholar
  28. 28.
    Maleki A (2014) Helv Chim Acta 97:587–593Google Scholar
  29. 29.
    Li C, Li X, Duan X, Li G, Wang J (2014) Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres. J Colloid Interface Sci 436:70–76Google Scholar
  30. 30.
    Maleki A, Hajizadeh Z, Firouzi-Haji R (2018) Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater 259:46–53CrossRefGoogle Scholar
  31. 31.
    Maleki A, Akhlaghi E, Paydar R (2016) Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl Organometal Chem 30:382–386CrossRefGoogle Scholar
  32. 32.
    Johnson SL, Guggenheim S, van Groos AF (1990) Thermal Stability of Halloysite by High-Pressure Differential Thermal Analysis. Clay Clay Miner 38:477–484CrossRefGoogle Scholar
  33. 33.
    Wang XS, Shi DQ, Tu ST, Yao CS (2003) A Convenient Synthesis of 5-Oxo-5,6,7,8-tetrahydro-4H-benzo-[b]-pyran Derivatives Catalyzed by KF-Alumina. Synth Commun 33:119–126CrossRefGoogle Scholar
  34. 34.
    Wang LM, Shao JH, Tian H, Wang YH, Liu B (2006) Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. J Fluor Chem 127:97–100CrossRefGoogle Scholar
  35. 35.
    Jin TS, Wang AQ, Wang X, Zhang JS, Li TS (2004). Synlett 5:871–873CrossRefGoogle Scholar
  36. 36.
    Pourian E, Javanshir S, Dolatkhah Z, Molaei S, Maleki A (2018) Ultrasonic-Assisted Preparation, Characterization, and Use of Novel Biocompatible Core/Shell Fe3O4@GA@Isinglass in the Synthesis of 1,4-Dihydropyridine and 4H-Pyran Derivatives. ACS Omega 3:5012–5020CrossRefGoogle Scholar
  37. 37.
    Moshtaghi Zonouz AA, Moghani D, Okhravi S (2014) A facile and efficient protocol for the synthesis of 2-amino-3-cyano-4H-pyran derivatives at ambient temperature. Curr Chem Lett 3:71–74CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Catalysts and Organic Synthesis Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations