Advertisement

Silicon

pp 1–14 | Cite as

Compact Analog-To-Digital Converter (ADC) Using Quantum Dot Gate-Quantum Dot Channel Field Effect Transistor (QDG-QDCFET)

  • Supriya KarmakarEmail author
Original Paper
  • 10 Downloads

Abstract

The generation of four states in their transfer characteristic of QDG-QDCFET makes them useful to implement four state logic or quaternary logic. On the other hand, the number of device count in a circuit like ADC can also be decreased using this multistate semiconductor device. This work shows the design of a compact analog-to-digital comparator (ADC) where QDG-QDCFET replaces the quantization circuit and reduces the device count. The device-integration increases, which is a major issue for the semiconductor industry. This paper also highlights process variation of the device, different performance parameters and different linearity analysis, such as differential nonlinearity (DNL), integral nonlinearity (INL) of the designed ADC.

Keywords

ADC Quantum dots MOSFET VLSI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin HC (1994) Resonant tunneling diodes for multi-valued digital applications. Proc. 24th IEEE Int. Symp. Multiple –Valued Logic, pp 188–195Google Scholar
  2. 2.
    Capasso F, Kiehl RA (1985) Resonant tunneling transistor with quantum well base and high –energy injection: a new negative differential resistance device. J Appl Phys 58(3):1366–1368CrossRefGoogle Scholar
  3. 3.
    Kruppa W, Boos JB (1992) Observation of DC and microwave negative differential resistance in InAlAs/InGaAS/InP HEMTs. Electron Lett 28(3):267–269CrossRefGoogle Scholar
  4. 4.
    Imtiaz SMS, El-Ghazaly SM (1998) Performance of MODFET and MESFET: a comparative study including equivalent circuits using combined electromagnetic and solid-state simulator. IEEE Trans Microwave Theory Tech 46(7)Google Scholar
  5. 5.
    Liang J, Chen L, Han J, Lombardi F (2014) Design and evaluation of multiple valued logic gates using Pseudo N-type carbon nanotube FETs. IEEE Trans Nanotechnol 13(4):695–708CrossRefGoogle Scholar
  6. 6.
    Moaiyeri MH, Mirzaee RF, Doostaregan A, Navi K, Hashemipour O (2013) A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits. IET Comput Digit Tech 7(4):167–181CrossRefGoogle Scholar
  7. 7.
    Kim YJ, Kim SY, Noh J, Shim CH, Jung U, Lee SK, Chang KE, Cho C, Lee BH (2016) Demonstration of complementary ternary graphene field-effect transistors. Sci Rep 6:39353CrossRefGoogle Scholar
  8. 8.
    Heo S, Kim S, Kim K, Lee H, Kim SY, Kim YJ, Kim SM, Lee HI, Lee S, Kim KR, Kang S, Lee BH (2018) Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron Device Lett 39:1948–1951.  https://doi.org/10.1109/LED.2018.2874055 CrossRefGoogle Scholar
  9. 9.
    Inokawa H, Fujiwara A, Takahashi Y (2003) A multiple-valued logic and memory with combined single-electron and metal-oxide-semiconductor transistors. IEEE Trans Electron Devices 50(2):462–470CrossRefGoogle Scholar
  10. 10.
    Kim SJ et al (2009) Single-Electron-based flexible multivalued exclusive-or logic gate. IEEE Transactions on Electron Devices 56(5):1048–1055CrossRefGoogle Scholar
  11. 11.
    Karmakar S, Chandy JA, Jain FC (2012) Design of Ternary Logic Combinational Circuits Based on quantum dot gate FETs. IEEE Transactions on Very Large Scale Integration Systems (TVLSI) 21(5):793–806CrossRefGoogle Scholar
  12. 12.
    Karmakar S, Suarez E, Jain F (2011) Quantum dot gate three state FETs using ZnS - ZnMgS lattice-matched gate insulator on silicon. J Electron Mater 40(8):1749–1756CrossRefGoogle Scholar
  13. 13.
    Karmakar S, Chandy JA, Gogna M, Jain FC (2012) Fabrication and circuit modeling of NMOS inverter based on quantum dot gate field effect transistors. J Electron Mater 41(8):2184–2192.  https://doi.org/10.1007/s11664-012-2116-4 CrossRefGoogle Scholar
  14. 14.
    Yadav M et al (2018) IEEE Transactions on Semiconductor Manufacturing 31, 3:356–362Google Scholar
  15. 15.
    Yadav M et al (2018). J Electron Mater 47(7):3560–3567CrossRefGoogle Scholar
  16. 16.
    Jain F, Karmakar S, Chan P-Y, Suarez E, Gogna M, Chandy J, Heller E (2012) Quantum Dot Channel (QDC) field-effect transistors (FETs) using II-VI barrier layers. J Electron Mater 41(10):2775–2784.  https://doi.org/10.1007/s11664-012-2161-z CrossRefGoogle Scholar
  17. 17.
    Papadimitrakopoulos F, Phely-Bobin T, Wisniecki P (1999) Self-assembled nanosilicon/siloxane composite films. Chem Mater 11(3):522–525CrossRefGoogle Scholar
  18. 18.
    Phely-Bobin T, Chattopadhyay D, Papadimitrakopoulos F (2002) Characterization of mechanically attrited Si/SiOx nanoparticles and their self-assembled composite films. Chem Mater 14(3):1030–1036CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering TechnologyFarmingdale State College-SUNYFarmingdaleUSA

Personalised recommendations