pp 1–16 | Cite as

Si-based Solar Cells’ Conversion Efficiency Related Publications Bibliometric Review During 2000-2017

  • Mohammad Reza Sabour
  • Mohammad Amin JafariEmail author
  • Seyed Massoud Hosseini Gohar
Original Paper


The conversion efficiency of solar cells is one of the hottest topics because it has an indirect relation with cost-effectiveness issues. Si-based PV cells are typical and most used worldwide. An investigation is reported in this paper to show the research trend and future research direction in the Si-based PV cells’ conversion efficiency. The 4647 publications data were retrieved from the Scopus database and analyzed. VOSviewer analyzed the collaboration of countries/territories, authors, and author keywords. China has been the most productive country, and the USA was the most collaborative one. Among the first 28 productive affiliations, China has five agents. Besides, by analyzing author keywords, it has been realized that scientific societies' attention is focused on utilizing nanotechnologies and nanostructured materials. These materials will be used to produce PV cells more cost-effective by increasing their conversion efficiency and decreasing raw materials (like Silicon) amount used for the production of them. Nanotechnologies and nanomaterials are one of the ways to achieve sustainable materials management by using materials more productively over their entire life cycle. Eventually, they will result in resource conservation and sustainable development. In general, this study provides valuable insights into solar cell researchers on this topic.


Solar energy Silicon solar cell Conversion efficiency Nanomaterials Nanotechnology Social network analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Compliance with ethical standards

Conflicts of Interest

There are no conflicts to declare.


  1. 1.
    Dr. Capuano L. International Energy Outlook 2018 (IEO2018). 2018;21. Available from: www.eia.govGoogle Scholar
  2. 2.
    IRENA. Global Energy Transformation: A Roadmap to 2050 [Internet]. 2018. 76 p. Available from:
  3. 3.
    IRENA, IEA, REN21. Renewable Energy Policies in a Time of Transition [Internet]. 2018. 1–111 p. Available from:
  4. 4.
    International Energy Agency. Market Report Series: Renewables 2018. 2018; Available from:
  5. 5.
    International Renewable Energy Agency (IRENA). [overview 2009-2016 data, LCOE,capacity]Renewable Power Generation Costs in 2017 [Internet]. SpringerReference. 2018. 77–85 p. Available from:,
  6. 6.
    Cuming V, Mills L, Strahan D, Boyle R, Stopforth K, Latimer S, et al. Global Trends in Renewable Energy Investment 2018. Frankfurt Sch Financ Mangement [Internet]. 2018;86. Available from:
  7. 7.
    Centuy RREPNFT 21st. Renewables 2018 Global Status Report [Internet]. 2018. Available from:
  8. 8.
    Dutt B, Nikam K. (2016) Scientometric analysis of global solar cell research. 63(March):31–41.Google Scholar
  9. 9.
    Tsay MY (2008) A bibliometric analysis of hydrogen energy literature, 1965-2005. Scientometrics. 75(3):421–438CrossRefGoogle Scholar
  10. 10.
    Du H, Wei L, Brown MA, Wang Y, Shi Z (2013) A bibliometric analysis of recent energy efficiency literatures: An expanding and shifting focus. Energy Efficiency 6(1):177–190CrossRefGoogle Scholar
  11. 11.
    Du H, Li N, Brown MA, Peng Y, Shuai Y (2014) A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. Renew Energy 66:696–706CrossRefGoogle Scholar
  12. 12.
    Bar-ilan J. (2008) Informetrics at the beginning of the 21st century — A review. 2:1–52.CrossRefGoogle Scholar
  13. 13.
    Gao C, Sun M, Geng Y, Wu R, Chen W. A bibliometric analysis based review on wind power price. Applied Energy [Internet]. 2016;182(301):602–612. Available from: CrossRefGoogle Scholar
  14. 14.
    Wang L, Wei Y, Brown MA. Global transition to low-carbon electricity : A bibliometric analysis. Applied Energy [Internet]. 2017;205(July):57–68. Available from: CrossRefGoogle Scholar
  15. 15.
    Wang L, Zhao L, Mao G, Zuo J, Du H. Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014. Renewable and Sustainable Energy Reviews [Internet]. 2017;68(August 2015):57–69. Available from: CrossRefGoogle Scholar
  16. 16.
    Tanaka Y, Ishizaki K, De Zoysa M, Umeda T (2015) Photonic crystal microcrystalline silicon solar cells. Prog Photovolt Res Appl 23(11):1475–1483CrossRefGoogle Scholar
  17. 17.
    Sahoo GS, Mishra GP. (2018) Design and modeling of an SJ infrared solar cell approaching upper limit of theoretical efficiency. Int J Mod Phys B 32(2).CrossRefGoogle Scholar
  18. 18.
    Shishodia PK, Ahluwalia GK. Photovoltaics. 2017. 371–407 p.Google Scholar
  19. 19.
    Hirsch JE. An index to quantify an individual ’ s scientific research output. 2005;102(46):16569–72.Google Scholar
  20. 20.
    Scimago Lab. (n.d.). SJR — SCImago Journal & Country Rank [Internet]. 2018 [cited 2018 Oct 28]. Available from:
  21. 21.
    Elsevier B.V. How are CiteScore metrics used in Scopus? - [Internet]. 2018 [cited 2018 Oct 18]. Available from:
  22. 22.
    Wang H, He Q, Liu X, Zhuang Y, Hong S. Global urbanization research from 1991 to 2009: A systematic research review. Landscape and Urban Planning [Internet]. 2012;104(3–4):299–309. Available from: CrossRefGoogle Scholar
  23. 23.
    Luceño-Sánchez JA, Díez-Pascual AM, Capilla RP. Materials for photovoltaics: State of art and recent developments. Int J Mol Sci. 2019;20(4).PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kivambe M, Aissa B, Tabet N. Emerging Technologies in Crystal Growth of Photovoltaic Silicon: Progress and Challenges. Energy Procedia [Internet]. 2017;130:7–13. Available from: CrossRefGoogle Scholar
  25. 25.
    Almosni S, Delamarre A, Jehl Z, Suchet D, Cojocaru L, Giteau M, et al. Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Sci Technol Adv Mater [Internet]. 2018;19(1):336–369. Available from: PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M (2016) Progress in emerging solution-processed thin film solar cells - Part I: Polymer solar cells. Renew Sust Energ Rev 56:347–361CrossRefGoogle Scholar
  27. 27.
    Marinova N, Valero S, Delgado JL. Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science [Internet]. 2017;488:373–389. Available from: PubMedCrossRefGoogle Scholar
  28. 28.
    Philipps SP, Bett AW (2014) III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv Opt Technol 3(5–6):469–478Google Scholar
  29. 29.
    Yamaguchi M (2012) Japanese R&D activities of high efficiency III-V compound multi-junction and concentrator solar cells. Energy Procedia 15(2011):265–274CrossRefGoogle Scholar
  30. 30.
    Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T (2013) Development Of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. AIP Conference Proceedings 1556(September):22–25CrossRefGoogle Scholar
  31. 31.
    Qingbin Z, Jang-Kyo K. Synthesis, Structure and Properties of Graphene and Graphene Oxide. In Graphene for Transparent Conductors. Synthesis, Properties and Applications. Vol. 53, Journal of Chemical Information and Modeling. New York, NY, USA: Springer; 2015. 29–94 p.Google Scholar
  32. 32.
    Sun Y, Zhang W, Chi H, Liu Y, Hou CL, Fang D. Recent development of graphene materials applied in polymer solar cell. Renew Sustain Energy Rev [Internet]. 2015;43:973–980. Available from: CrossRefGoogle Scholar
  33. 33.
    Botas C, Álvarez P, Blanco P, Granda M, Blanco C, Santamaría R et al (2013) Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon. 65:156–164CrossRefGoogle Scholar
  34. 34.
    Tong SW, Balapanuru J, Fu D, Loh KP (2016) Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer. ACS Applied Materials & Interfaces 8(43):29496–29503CrossRefGoogle Scholar
  35. 35.
    Xakalashe BS, Tangstad M. Silicon processing: from quartz to crystalline silicon solar cells. Southern African Pyrometallurgy International Conference. 2011;(March):1–18.Google Scholar
  36. 36.
    La Notte L, Bianco GV, Palma AL, Di Carlo A, Bruno G, Reale A (2017) Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon 129:878–883CrossRefGoogle Scholar
  37. 37.
    Huang X, Guo H, Yang J, Wang K, Niu X, Liu X. Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells. Organic Electronics [Internet]. 2016;39:288–295. Available from: CrossRefGoogle Scholar
  38. 38.
    Carrasco-Valenzuela L, Armando Zaragoza–Contreras E, Vega–Rios A. Synthesis of graphene oxide/poly(3,4–ethylenedioxythiophene) composites by Fenton’s reagent. Polymer (Guildf) [Internet]. 2017;130:124–134. Available from: CrossRefGoogle Scholar
  39. 39.
    Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23(5):629–633PubMedCrossRefGoogle Scholar
  40. 40.
    Frank D, Matthias G, Paul B, Ulrich F, Christian K, Thomas NDT et al (2014) Waferbonded four-junction GaInP/GaAs//GaInAsP/GaInAsconcentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications 22(January):277–282Google Scholar
  41. 41.
    Agresti A, Pescetelli S, Cinà L, Konios D, Kakavelakis G, Kymakis E et al (2016) Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer. Advanced Functional Materials 26(16):2686–2694CrossRefGoogle Scholar
  42. 42.
    Sampaio PGV, González MOA (2017) Photovoltaic solar energy: Conceptual framework. Renew Sust Energ Rev 74(June 2016):590–601CrossRefGoogle Scholar
  43. 43.
    Green MA, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Hohl-Ebinger J et al (2017) Solar cell efficiency tables (version 50). Progress in Photovoltaics: Research and Applications 25(7):668–676CrossRefGoogle Scholar
  44. 44.
    Lalande G, Guelton N, Cossement D, Saint-Jacques RG, Dodelet JP (1994) Optimum growth conditions for the epitaxy of GaAs on Ge by close-spaced vapor transport. Canadian Journal of Physics 72(5-6):225–232CrossRefGoogle Scholar
  45. 45.
    Grandidier J, Callahan DM, Munday JN, Atwater HA (2012) Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres. IEEE Journal of Photovoltaics 2(2):123–128CrossRefGoogle Scholar
  46. 46.
    Chopra KL, Paulson PD, Dutta V (2004) Thin-Film Solar Cells: An Overview. Prog Photovolt Res Appl 12(December 2003):69–92CrossRefGoogle Scholar
  47. 47.
    Izu M, Ovshinsky SR, Deng X, Krisko A, Ovshinsky HC, Narasimhan KL, et al. (2008) Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology. 198(1994):198–218.Google Scholar
  48. 48.
    Arul S, Arun KR (2016) Synthesis and characterization of CuIn0.7Ga0.3Se2 (CIGS) bulk compound and hot wall deposited thin film absorber layer for solar cell applications. Rasayan J Chem 9(2):278–286Google Scholar
  49. 49.
    Thomas F, Reinhard P, Avancini E, Bissig B, Löckinger J, Fuchs P et al (2016) Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications. Prog Photovolt Res Appl 25:645–667Google Scholar
  50. 50.
    Gong J, Liang J, Sumathy K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew Sustain Energy Rev [Internet]. 2012;16(8):5848–60. Available from: CrossRefGoogle Scholar
  51. 51.
    Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL [Internet]. [cited 2019 Sep 5]. Available from:
  52. 52.
    Masciangioli T, Zhang W-X. Peer Reviewed: Environmental Technologies at the Nanoscale. Environmental Science & Technology [Internet]. 2003;37(5):102A–108A. Available from: CrossRefGoogle Scholar
  53. 53.
    Maynard AD. Nanotechnology : The Next Big Thing , or Much Ado about Nothing ? 2007;51(1):1–12.Google Scholar
  54. 54.
    Aydil ES (2007) Nanomaterials for solar cells. Nanotechnology Law & Business 4(3):275–291Google Scholar
  55. 55.
    Prindle B, Eldridge M, Eckhardt M, Frederick A. The twin pillars of sustainable energy: synergies between energy efficiency and renewable energy technology and policy. 2007;20036(May). Available from:
  56. 56.
    Obrecht M, Denac M. A sustainable energy policy for Slovenia: Considering the potential of renewables and investment costs. J Renew Sustain Energy. 2013;5(3).CrossRefGoogle Scholar
  57. 57.
    EPA. Sustainable Materials Management [Internet]. [cited 2018 Dec 24]. Available from:

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Environmental Engineering, Faculty of Civil EngineeringK.N. Toosi University of TechnologyTehranIran
  2. 2.Environmental Engineering, Faculty of Civil EngineeringK.N. Toosi University of TechnologyTehranIran
  3. 3.Managing director of Parto Faragiran-e Raya companyTehranIran

Personalised recommendations